

Pricing electricity futures with distortion functions under model ambiguity

Michael Schürle, ior/cf-HSG

joint work with Daniela Escobar (LSE) and Florentina Paraschiv (NTNU Business School)

Energieforschungsgespräche Disentis

22nd January 2021

Agenda

Motivation

Novel pricing approach

Recovering distortion functions

Model for spot prices

Identification results

Summary

Michael Schürle | Pricing electricity futures with distortion functions under model ambiguity | 22nd January 2021

Page 3/22 Motivation

Motivation

- Model link between price of commodity future F(t, T) with delivery at time T and current spot price S(t) at time t
- Classical approach: Cost of carry concept

$$F(t,T)=S(t)e^{c(T-t)}$$

where c = r + u - y is the sum of interest rate r and storage cost u minus convenience yield y

- Not applicable for power futures due to non-storability of electricity
- Alternative: Price futures as expected spot price plus risk premium

$$\mathbb{F}(au, m) = \mathbb{E}_{P}(X^{m} | \mathcal{F}_{ au}) + \text{risk premium}$$

where $\mathbb{F}(\tau, m)$ is the price of the future contract (base/peak) with delivery in month $m = [T_1, T_2]$ and

Reason for existence of risk premium

- Market participants are risk averse:
 - For consumers, the risk premium is the amount they are willing to pay in addition to the expectation of spot prices to protect themselves against large price increases
 - For producers, it is the minimum discount they are willing to accept as protection against a decrease in spot prices
- Risk preferences change with time-to-delivery (Benth et al. 2008):
 - Consumers are willing to pay a premium for futures with short time-to-delivery
 - Producers accept a discount for the option of fixing the electricity price longer in advance

Literature overview

- Bessembinder/Lemmon (2002): Risk premium negatively related to volatility and positively related to skewness of future spot prices
- Benth et al. (2008) estimate premium within equilibrium framework under the assumption of exponential utility functions for producers and consumers. A forward price is expressed as a risk-neutral expectation after a change the probability measure by an Esscher transform
- Benth/Sgarra (2012) also use an Esscher transform, but point out its limited flexibility
- ▶ Benth/Meyer-Brandis (2009) develop a concept to incorporate additional information that is not contained in the σ -algebra \mathcal{F}_{τ} of spot prices at trading time τ
- Benth et al. (2013) apply this enlargement of filtration to base futures in the German market
- Veraart/Veraart (2013) and Janczura (2014) apply a change in the pricing measure

Page 6/22 Motivation

Ex-ante vs. ex-post risk premium

The risk premium may be studied at trading time \(\tau\) (ex-ante) or after delivery (ex-post):

$$r_{ante}(\tau, m) = \mathbb{F}(\tau, m) - \mathbb{E}_{P}(X^{m} | \mathcal{F}_{\tau})$$

$$r_{post}(\tau, m) = \mathbb{F}(\tau, m) - X_{r}^{m}$$

where X_r^m is the realized monthly average spot price for a certain load profile (base/peak)

- The above mentioned papers model the ex-ante risk premium. A typical finding is that the premium decreases if delivery is further in the future
- Comparison with ex-post premium derived from data shows that premium increases for longer time-to-delivery
- For the analysis in the sequel, we use German (Phelix) base and peak futures traded at the EEX and day-ahead prices for Germany from EPEX

Ex-post risk premium observed in data

The graph shows for each calendar month between 2010 and 2017 the

 \blacktriangleright average evolution of prices $\mathbb{F}(au(k,m),m)$ for futures with

- $k = 6, \ldots, 1$ months to delivery (dots) in comparison with the
- averages of realized monthly spot prices (horizontal lines)
- Base futures are shown left, peak futures right
- The differences between the lines correspond to the average ex-post risk premia for different time-to-delivery

Michael Schürle | Pricing electricity futures with distortion functions under model ambiguity | 22nd January 2021

Ex-post risk premium observed in data

- Observed risk premium higher for longer time-to-delivery, decreases when delivery is approached
- Differences between seasons, more pronounced for base futures:
 - Larger premia in winter months (October to March)
 - Premia around zero in summer (April to September)

Our approach

- More flexible modelling approach needed:
 - No assumptions on risk preferences, derive only from data
 - Take into account differences between seasons
- Our approach:
 - Risk preferences are modeled by distortion functions (common pricing principle in insurance economics)
 - "Distorting" the physical measure P of X^m (given F_τ) leads to a new pricing measure P_h, and futures prices can be written as

$$\mathbb{F}(\tau,m) = \mathbb{E}_{P_h}(X^m | \mathcal{F}_{\tau})$$

- We allow for a shift of the distribution of X^m to incorporate additional information not reflected in past spot prices
- Since any model for future spot prices is imperfect, we also include model risk (ambiguity) in the approach
- We separate futures with delivery in different seasons

Michael Schürle | Pricing electricity futures with distortion functions under model ambiguity | 22nd January 2021

Distortion premium principle

- Idea: Incorporate risk premium by transforming the probability P or cdf F, respectively (Denneberg 1990, Wang 1995)
- The distortion premium is defined as the expectation of a random variable X w.r.t. a distortion of the probability P
- In practice, we distort the cdf of random losses (in our context: spot prices).
- Thus we define the distortion premium applied to the cdf:

$$\pi_h(F) = \int_0^1 F^{-1}(v)h(v)dv$$

where h is a density on [0, 1]

▶ Depending on the distortion, the risk premium can be positive or negative (i.e., $\pi_h(F) \ge \mathbb{E}(F)$ or $\pi_h(F) \le \mathbb{E}(F)$)

AV@R as example of a distortion premium

 Consider as example the one-step density

$$h(v) = \frac{1}{1-\alpha} \mathbb{1}_{v \ge \alpha}$$

for 0 $\leq \alpha <$ 1

This leads to the well-known average value-at-risk (conditional value-at-risk, expected shortfall):

$$AV@R_{\alpha}(F) = \frac{1}{1-\alpha} \int_{\alpha}^{1} F^{-1}(v) dv$$

Figure: Density h for AV@R_{0.8}.

Incorporation of model ambiguity

- Any model that implies a distribution F of future spot prices may be imperfect since the true (but unknown) distribution is G
- We account for potential misspecification by considering a set of models called ambiguity set
- ▶ Its radius $\varepsilon > 0$ is calculated with respect to the Wasserstein distance:

$$\pi^{arepsilon}_{h}({\sf F}) = \sup\{\pi_{h}({\sf G}) \ : \ {
m WD}({\sf F},{\sf G}) \leq arepsilon\} = \pi_{h}({\sf F}) \pm arepsilon \, ||h||_{\infty}$$

The last term has positive (negative) sign if h is increasing (decreasing)

Figure: Wasserstein distance $WD = \int_0^\infty |F(x) - G(x)| dx$ between F and G. Michael Schürle | Pricing electricity futures with distortion functions under model ambiguity | 22nd January 2021

Correction of baseline distribution

- Following Benth/Meyer-Brandis (2009), we allow also for a shift in the distribution of X^m
- This may reflect a premium for forward-looking information not reflected in past spot price data
- > The correction parameter $\theta > 0$ reduces, $\theta < 0$ increases mean and variance of the baseline distribution

Figure: Effect of positive and negative shift parameter on baseline distribution.

Recovering distortion functions under model ambiguity

Putting all components together, the price of a futures contract with delivery in month m at time \u03c6 is:

$$\mathbb{F}(\tau, m) = \underbrace{(1 - \theta)}_{\text{correction}} \cdot \underbrace{\pi_h(X_\tau^m | \mathcal{F}_\tau)}_{\text{risk preferences}} \pm \underbrace{\varepsilon \cdot ||h||_{\infty}}_{\text{ambiguity}}$$

- ldentify correction θ , distortion density h and ambiguity radius ε to explain pricing mechanism from the data
- Distortion densities h are approximated by step functions as well as splines
- Futures contracts are grouped by time-to-delivery (one to six months) and season (winter/summer), parameters are estimated individually for each of the 12 groups
- ▶ The recovering procedure fits observed futures prices to those implied by the model, subject to conditions ensuring that the estimated \hat{h} is a valid distortion density
- For the estimation, the baseline distribution is sampled from a spot model

Characteristics of electricity spot prices

Figure: Monthly average base and peak spot prices vs. marginal costs of generation with coal and gas (in \in /MWh).

Characteristic features of electricity spot prices:

- 1. Price levels change over time due to fluctuations in fuel prices
- 2. Persistent clustering of price spikes (upwards/downwards) over several hours skews the distribution
- 3. Prices exhibit seasonality patterns (yearly, weekly, intra-day)

Michael Schürle | Pricing electricity futures with distortion functions under model ambiguity | 22nd January 2021

Regime switching model for spot prices

The hourly spot price at time t is described by a Markov regime-switching model with base, lower and upper spike regime:

	$\ell_t^L - \xi_t^L,$	if the system is in the lower spike regime,
$spot_t = \langle$	$s_t \cdot \exp(Y_t),$	if the system is in the base regime or
l	$\ell_t^U + \xi_t^U,$	if the system is in the upper spike regime.

$$\blacktriangleright \ \ell^U_t = s_t \cdot L_t \cdot \exp(\alpha^U_\beta) \text{ and } \ell^L_t = s_t \cdot L_t \cdot \exp(-\alpha^L_\beta) \text{ are regime limits}$$

- The latent stochastic price level L_t follows a geometric Brownian motion, s_t is a seasonality component
- Y_t is the logarithm of the spot price (corrected for seasonal effects) and follows an Ornstein-Uhlenbeck process around the stochastic mean In L_t
- ► Deviations of spot prices from the regime limits in the spike regimes are Weibull-distributed: $\xi_t^U \sim \operatorname{Wei}(\lambda_\gamma^U, k_\gamma^U)$, $\xi_t^L \sim \operatorname{Wei}(\lambda_\gamma^L, k_\gamma^L)$
- Season-dependent transition matrix Π_γ
- β := β(t) and γ := γ(t) map time t to an index set in order to use different parameter sets in different seasons, weekdays or time of the day

Page 17/2

Estimation results for base futures

(a) Step distortion densities							(b) Spline distortion densities							
	label	k	\widehat{h}	$\widehat{\theta}$	$\hat{\varepsilon}$	$\widehat{\varepsilon} \cdot \widehat{h} _\infty$		label	k	\widehat{h}	$\widehat{\theta}$	ε	$\widehat{\varepsilon} \cdot \widehat{h} _\infty$	
W	-1B -2B -3B -4B -5B -6B	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	アアアアアー	0.1263 0.1243 0.0620 -0.0083 -0.0696 -0.0927	$\begin{array}{c} 0.1177\\ 0.1347\\ 0.2179\\ 1.0227\\ 1.4758\\ 1.9706 \end{array}$	$\begin{array}{c} 1.1770\\ 1.3472\\ 1.3634\\ 1.4301\\ 1.6887\\ 1.9706\end{array}$	W	-1B -2B -3B -4B -5B -6B	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	アアアアアー	0.1350 0.1312 0.0670 -0.0107 -0.0637 -0.0927	$\begin{array}{c} 0.0600\\ 0.0761\\ 0.1169\\ 1.0222\\ 0.8977\\ 1.9706 \end{array}$	$\begin{array}{c} 1.1809 \\ 1.3569 \\ 1.3668 \\ 1.4287 \\ 1.6947 \\ 1.9706 \end{array}$	
s	-1B -2B -3B -4B -5B -6B	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	~~~~	0.1488 0.1802 0.1301 0.0446 0.0091 -0.0030	$\begin{array}{c} 0.1542 \\ 0.1108 \\ 0.4059 \\ 1.2529 \\ 1.4456 \\ 1.7652 \end{array}$	$\begin{array}{c} 1.0716 \\ 1.1076 \\ 1.1762 \\ 1.3662 \\ 1.4456 \\ 1.7652 \end{array}$	s	-1B -2B -3B -4B -5B -6B	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.1499 0.1780 0.1314 0.0373 0.0091 -0.0030	$\begin{array}{c} 0.1394 \\ 0.0808 \\ 0.3711 \\ 1.2873 \\ 1.4456 \\ 1.7652 \end{array}$	$\begin{array}{c} 1.0724 \\ 1.1067 \\ 1.1788 \\ 1.3591 \\ 1.4456 \\ 1.7652 \end{array}$	

- \blacktriangleright Positive (negative) $\widehat{ heta}$ decreases (increases) mean and variance
- For short (long) time-to-delivery, empirical distribution shifted downwards (upwards) before applying distortion
- Downward shifts more pronounced in summer

Page 18/2

Estimation results for base futures

(a) Step distortion densities								(b) Spline distortion densities							
	label	k	\widehat{h}	$\widehat{ heta}$	ε	$\widehat{\varepsilon} \cdot \widehat{h} _\infty$			label	k	\widehat{h}	$\widehat{ heta}$	έ	$\widehat{\varepsilon} \cdot \widehat{h} _{\infty}$	
W	-1B	1	7	0.1263	0.1177	1.1770			-1B	1	7	0.1350	0.0600	1.1809	
	-2B	2	\nearrow	0.1243	0.1347	1.3472	W	-2B	2	\nearrow	0.1312	0.0761	1.3569		
	-3B	3	\nearrow	0.0620	0.2179	1.3634		-3B	3	\nearrow	0.0670	0.1169	1.3668		
	-4B	4	~	-0.0083	1.0227	1.4301		-4B	4	\nearrow	-0.0107	1.0222	1.4287		
	-5B	5	\nearrow	-0.0696	1.4758	1.6887		-5B	5	\nearrow	-0.0637	0.8977	1.6947		
	-6B	6	-	-0.0927	1.9706	1.9706		-6B	6	-	-0.0927	1.9706	1.9706		
s	-1B	1	7	0.1488	0.1542	1.0716			-1B	1	\nearrow	0.1499	0.1394	1.0724	
	-2B	2	\nearrow	0.1802	0.1108	1.1076	S	-2B	2	\nearrow	0.1780	0.0808	1.1067		
	-3B	3	\nearrow	0.1301	0.4059	1.1762		-3B	3	\nearrow	0.1314	0.3711	1.1788		
	-4B	4	\nearrow	0.0446	1.2529	1.3662		-4B	4	\nearrow	0.0373	1.2873	1.3591		
	-5B	5	_	0.0091	1.4456	1.4456		-5B	5	_	0.0091	1.4456	1.4456		
	-6B	6	-	-0.0030	1.7652	1.7652		-6B	6	-	-0.0030	1.7652	1.7652		

▶ ↗ indicates distortion density, implies risk aversion against high prices

- stands for constant distortion density, no distortion is applied
- Ambiguity increases when delivery is further in the future

Estimated step distortion densities for base futures

Increasing distortion densities in winter (left)

- AV@R_{0.9} for delivery in 1 and 2 months reflects risk aversion against high prices for short time-to-delivery
- Higher quantiles become less weighted as time-to-delivery increases, no need for distortion when delivery is 6 months in the future

Estimated step distortion densities for base futures

- Similar risk preferences in summer (right), increasing densities for short time-to-delivery (AV@R_{0.9} for delivery in 2 months)
- Higher quantiles become less weighted as time-to-delivery increases
- No need for distortion when delivery is 5 and 6 months in the future

Observed monthly base futures prices vs. estimated prices (\in /MWh)

- Estimated futures prices fit observed ones well
- Contribution of ambiguity to overall risk premium small (high explanatory power of spot model for futures prices)

Estimated ex-ante risk premia for base futures (\in /MWh)

- Recovered ex-ante risk premia recover persistent seasonal behavior, consistent with observed ex-post premia
- Risk premia for futures with delivery in winter are higher
- Contracts with delivery in summer have negative risk premia (except for shortest time-to-delivery)

Out-of-sample comparison: Oserved monthly base futures prices vs. estimated prices

Model-implied futures prices match observed ones also out-of-sample

Seasonal pattern reflected realistically

Summary (1/2)

- We model the link between electricity spot and futures prices, taking into account risk preferences, correction for additional information and ambiguity (model risk)
- The novelty is the application of the distortion pricing principle for futures on non-storable commodities
- Distortion densities weight the probabilities implied by the baseline distribution according to risk preferences
 - Base futures: Increasing densities for short time to delivery
 - Reflects consumers' aversion against large spot prices
 - Peak futures (not shown): No distortion for close deliveries, decreasing density for delivery in summer three months ahead
 - Can be explained by producers' wish to hedge against extreme low prices for large PV infeed
- The shapes of distortion densities are purely identified by the data (no specific assumptions on risk preferences imposed)

Summary (2/2)

- Inclusion of model risk is a further novelty for pricing electricity futures, indicates which spot model should be used
- Spot prices are modeled by a novel regime-switching approach, unobservable factors are estimated by a Kalman filter
- Simulated spot prices have a high explanatory power for futures prices compared to other studies
- Model-implied prices fit observed prices well, the estimated ex-ante premia reflect the pattern of the ex-post premia calculated from observed prices

Future work:

- Show contribution of different components by comparing with sub-models
- Compare pricing approach with benchmark models
- Illustrate contribution of ambiguity to risk premium by comparison with simpler spot model