University of Applied Sciences and Arts of Southern Switzerland Department for Environment Constructions and Design Institute for Applied Sustainability to the Built Environment SUPSI PVLab laboratory

#### **SUPSI**

# Investigations on the Main Causes for Reduced Performances during the Early Stage of Life of Rooftop PV Systems

#### Mauro Caccivio

University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Institute for Applied Sustainability to the Built Environment (ISAAC) Head of SUPSI PVLab

Email: mauro.caccivio@supsi.ch

#### **Domenico Chianese**

University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Institute for Applied Sustainability to the Built Environment (ISAAC) Senior researcher SUPSI PVLab

Email: domenico.chianese@supsi.ch

### **Summary**

- Introduction
- Purpose of the project
- Overview
- Results
- Conclusions



#### Introduction



#### Introduction



#### Introduction



### Purpose

- Several PV systems with poor energy production
  - The lifespan of a rooftop PV plant can be estimated around 25-30 years, while the oldest plant in Europe, installed at SUPSI, has exceeded 35 years of life.
  - As in any system, defects and problems typically occur in the early years and at the end of life of the system itself.
- What are the main causes for reduced performance?

#### The objectives of the project were manifold:

- Identify, classify and prevent defects that emerge after the first years of operation (≤ 5 years).
- Correlate them with power at the beginning of life.
- Improve knowledge of observed early stage defects in order to reduce costs and risks for both systems' owners and installers.



#### **Actions:**

- Risk reduction, both for existing and newly installed plants.
- Improve the quality, lifespan and reliability of photovoltaic systems in ticino
- Improve system level performance
- Accelerate the return on investment

**SUPSI** 

## Purpose: framework



| Classi [kW] | N° impianti a fine 2019 |         | Potenza a fine 2019 [kW] |         |
|-------------|-------------------------|---------|--------------------------|---------|
| 0-10        | 3'535                   | (71.5%) | 24'043                   | (26.9%) |
| 10-30       | 1'134                   | (22.9%) | 19'919                   | (22.3%) |
| 30-100      | 158                     | (3.2%)  | 9'300                    | (10.4%) |
| 100-1000    | 114                     | (2.3%)  | 30'162                   | (33.7%) |
| >1000       | 4                       | (0.1%)  | 6'033                    | (6.7%)  |
| Totali      | 4'945                   | (100%)  | 89'456 <sup>4</sup>      | (100%)  |

#### Where:

- Ticino, South of Switzerland
- 350'000 inhabitants
- > 5000 PV systems installed
- ≈ 90MW power (STC)
- 260W / inhabitant

Goal: > 330 MW (out of 880MW possible on rooftop)

Subsidies for PV Systems and renewables energy:

- Swiss subsisies +
- Regional subsidies:
  - FER: Renewable Energy Fund
- FER control of the injected energy

# Purpose: durability and reliability, focus points

Durability and reliability of photovoltaic systems depend on many factors:

- Quality of components (modules, but not only, also: inverters, connectors, etc.)
- Quality of dimensioning and design
- Quality of installation execution
- Quality of maintenance
- Climatic conditions
- Neighborhood conditions

Main topics for the rapid adoption of the PV:

- Drastic cost reduction
  - New technologies adopted
  - New installation systems
- Rapid growth of number of PV installations
  - Lack of knowledge of technologies
  - Lack of monitoring and controls

Quality affects different stakeholders in the value chain:

- Module and inverter and other components' manufacturers
- PV system installers
- Investors
- Owner of PV systems



#### Overview: method



#### **Checklist measurements:**

- Measurement of the I-V characteristic of the string (I-V tracer); extrapolation to STC.
- Measurement of insulation (Riso), Voc and Isc.
- Polarization measurement (i.e. PID)
- Thermographic analysis (where possible)
- Visual analysis of the PV modules (where possible)
- Partial shadow analysis
- System and BOS analysis (inverters, string boxes, connectors, cables,....)
- Documentation

An energy production analysis is not carried out!

## Overview: approach and limits

- 30 rooftop PV systems were tested (out of a total of approx. 4200 plants in Ticino)
- Only 1.4% of the installed power in Ticino in 2018
- built in the last 5-7 years.
- Measurements and checklist in accordance to international standard



30 rooftop PV systems examinated in Canton Ticino, South of Switzerland

#### Limits of the project:

- Only PV plants with FER control of the energy fed into the grid
- Not an exhaustive statistic
- Self-consumption does not always allow a correct preliminary analysis
- Limited measurement and analysis time available
- Access to roofs not always possible



### Overview: measurements

- A total of 560 strings were checked (I-V curve measurement, insulation measurement, visual inspection, etc.).
- 360 pictures with infrared thermography (IRT) were taken on half of the PV plants (14 out of 30 PV plants).
- The visual inspections were carried out directly or with the help of a drone.
- The traceability of defects was limited by the difficulty in accessing the roofs, in particular the pitched ones (limits in detailed visual inspection and infrared thermography).

- About 560 I-V curve with HALM and TRIKA IV curve tracers
- About 560 insulation measurement with Benning PV 1-1



## Overview: 30 PV systems - 1.1MW measured

- 29 systems inpected less than 5 years old
- 1 system inpected 22 years old
- Power classes:
  - < 5kW: 4
  - < 15kW: 7</li>

2/3 are small PV systems

- < 30kW: 8
- > 30kW: 11
- TOTAL: 1.1 MW
  - (1.4% of the 79MW installed up to the end of 2018)
- Type of roof:
  - Pitched roof: 14
  - Flat roof: 15
  - BIPV: 0
  - Field: 1 (the 22 years old system)

- **Cell types:** sc-Si and mc-Si with 2BB or 3BB, one system with half-cut cells.
- Type of plant: on-grid, in self-consumption
- Inverter type:
  - Central Inverter with one or more MPPTs: 26
  - String Inverter: 3
  - Optimiser: 1
- Number of strings per plant:
  - Mean: 9.8
  - 1 to 42 (96)
- Number of inverters per plant:
  - Mean: 1.7
  - 1 to 6 (16)



# Types of defects / errors / system failures found

The types of defects, errors or faults encountered during the analyses can be grouped into four different areas:

- 1. Errors in the **design** of the system
- 2. Plant or component construction errors (wiring, cables and connectors, modules, inverter ...)
- 3. Maintenance problems (soiling, fault traceability, lack of monitoring...)
- 4. **Aging** defects (faults, hot-spots, burns or oxidations in cells or connectors, ...)

#### Occurence of defects / errors / failures:

- Soiling is by far the most frequent problem encountered
  - 24 dirty plants
  - 3 clean plants
  - 3 n.a.
- Temporary partial shadows
  - Present in more then 50% of the plants
- Permanent partial shadows
  - In 16.7 % of the plants
- Strings disconnected: 3 out of 203

|   | Defects/Errors/Failures in strings |           |
|---|------------------------------------|-----------|
| 1 | Power Degradation (STC)            | 96.5 %    |
| 2 | Soiling on modules                 | 88.9 %    |
| 3 | Partial shadows                    | 53.3 %    |
| 4 | Permanent partial shadows          | 16.7 %    |
| 5 | Defects / dirt in the inverter     | 10.0 %    |
| 6 | Broken glass                       | 3 modules |
| 7 | Strings disconnected               | 1.4 %     |

Note: Thermography was not possible to systematically analyze the presence of hot spots in all plants.

#### **SUPSI**

### Power differences, Pmax\_measured (STC) vs. Pmax\_nominal (STC)



# Design issues

- Permanent partial shadows!
  - Mutual shadows
  - Chimneys
- Temporary partial shadows:
  - Chimneys
  - Trees
  - Poles
  - Antennas
- and corresponding electrical wiring









I-V curve with module permanently shaded (measure and STC)

# Design issues, some examples:



Mutual shadows



Tree shadows



Near building shadows





Chimney shadows

## Construction and wiring defects and errors

- Incorrect number of modules in the string
- Changes in layout or position of the modules
- Incorrect wiring of dummy (spare) modules



Cell defects



Dummy module in Isc instead Voc



Layout and wiring error



Poor wiring

Only few construction or wiring defects

### Maintenance issues: examples



Dirty Inverter filter: derating in power



Soiling on bottom edge in proximity to the ground:



Soiling on the bottom edge of the modules can cause hot spots







# Maintenance issues: soiling



- No hot-spot but lower performance (e.g. -30%)
- Soiling is not always uniform but heterogeneous: it can accumulate in some parts of the modules or of the strings
- Farms and agriculture are more sensitive







# Maintenance: modules tilt angle on flat and pitched roofs



- Modules tilt angle:
  - Mean: 14.2°
  - Min: 3°
  - Max: 30°
- The decrease in tilt angle, increases soiling problem

# Aging defects or glass breakage: examples

- Damage to the cell or glass (browning, broken glass, delamination, etc...)
- Loss of power (transparency of the glass, current, ...)
- Activation of the by-pass diode
- Hot-spots



Short circuit / lightning or hot spot ?



Hot spots can cause broken glasses

...and browing cells

#### Conclusions

- The 30 PV plants (1.4% of the power installed in Canton Ticino, Switzerland), were chosen from those with reduced production or already with indications of defects, built in the last 5-7 years:
   2/3 less then 30kW
- 4 different types of defects, errors or faults found: errors in the **design** of the system / Plant or component **construction** errors / **maintenance** problems / **aging** defects
- «Design» and «Maintenance» are the two main causes of functional defects in plants and lower performance.
- «Soiling» is by far the most frequent problem encountered. It is a maintenance issue but also a
  design issue (tilt angle).

# Conclusions/Suggestions



The **installer** should care for:

- Limit partial shadows
- Avoid permanent shadows
- Increase knowledge in design

#### The owner should care for:

- Monitoring (monthly values but at least annual value)
- Comparing (with expected simulated performance)
- Annual maintenance (cleaning modules and inverter filters, cutting trees and hedges)

#### Thanks to:



- Cantone Ticino, Fondo Cantonale FER
- Ufficio dell'energia del cantone Ticino



- Team ENGINEERING ISAAC: Enrico Burà, Boris Margna, Nicolas Ostinelli
- Team PVLAB ISAAC: Gabi Friesen



Questions