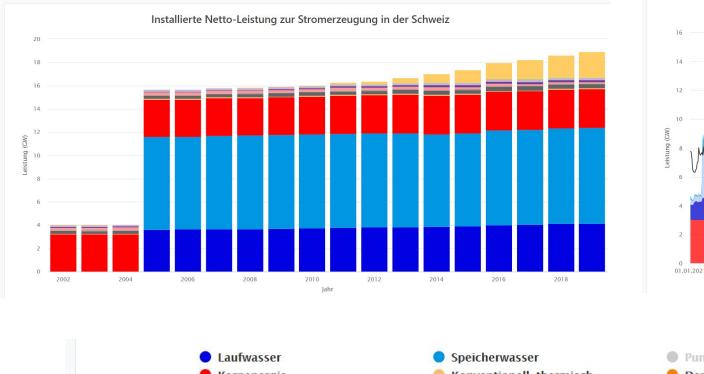
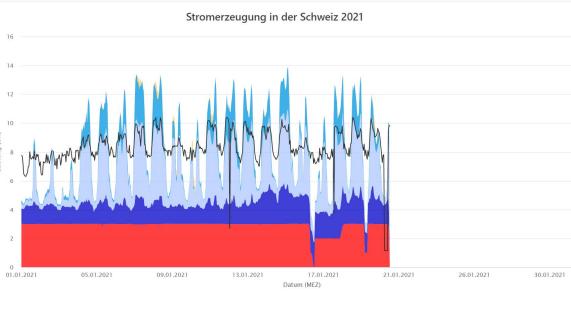
ETH zürich

Nexus-e: Scenarios for the future Swiss electricity system and the role of flexibility options


ENERGIEFORSCHUNGSGESPRÄCHE DISENTIS 2021


Marius Schwarz, Energy Science Center, ETH Zürich

Energy transition in Switzerland *What is Nexus-e*?

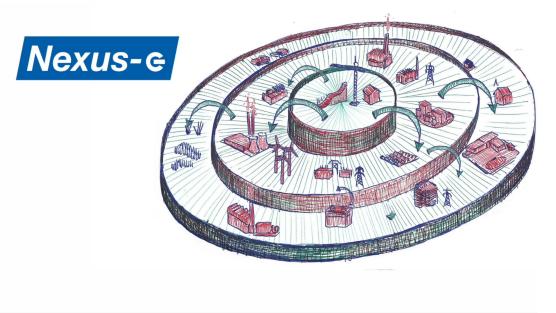
Laufwasser
Speicherwasser
Kernenergie
Konventionell-thermisch
Deponiegas
Fernheizkraftwerke
Solar

UmwälzwerkKehrichtverbrennung ohne Wärme

Klein-WKK

Energy-Charts.info - letztes Update: 03.12.2020, 22:57 MEZ

Vision of a Modeling Infrastructure for energy systems:

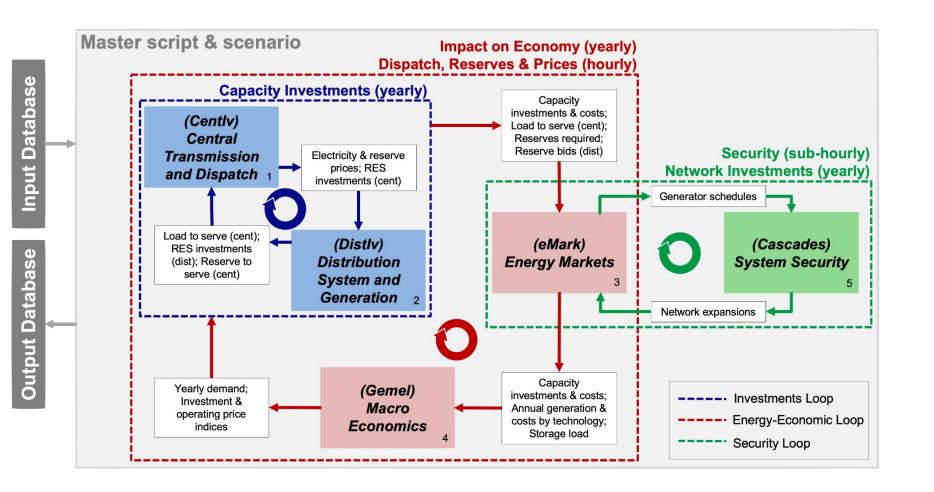

What is Nexus-e?

- A modelling platform that aims to represent the whole electricity system at regional and national scale.
- Based on modularity, transparency, and the definition of interfaces between models.
- Combines strengths of top-down and bottom-up modelling approaches to account for complexity in the electricity system

Nexus-e is based on three principles:

Transparency:

- Be a transparent and well-trusted, ready-to-access platform that is openly available to ETH researchers, industry and partners
- Provide reproducible results and analyses: not a 'black box' and keep/capture the *know how* of existing/ongoing research projects (effectively transfer the "know-how" across disciplines)
- Harmonize research viewpoints, data and modelling assumptions


Modularity:

- Integrate cross-disciplinary models through a flexible and modular structure
- Interact with existing projects to capture/keep know-how

Defined interfaces:

- Identify, define and implement interfaces to capture model interdependencies
- Interconnect layers and sectors of the energy system

The actual implementation connects and loops the modules to address *What is Nexus-e?*

- Key model paradigms:
 - (non-)Linear & mixed integer optimization
 - High temporal and spatial resolution
 - Interfaces & hard linking modules from different sectors
- Loops & Interfaces
 - Capacity investments between central and distributed systems
 - Influences between energy and the economy
 - System security and network expansion

P&D Project: The role of flexibility providers in shaping the future energy system What is Nexus-e?

- Nuclear phase-out
- Renewables
- **Demand reduction**
- Deep decarbonization

- Security of supply Investment and incentives

Renewables cause higher variability and uncertainty and needs to be matched with increased flexibility.

- <u>Short-term flexibility</u>: balances sub-hourly and hourly deviations in the actual electricity demand and generation; supports system stability and frequency control,
- Long-term flexibility: accounts for the daily, weekly, and seasonal needs for generation or oversupply because of outages, weather conditions, or seasonal changes.
- What are potential pathways for the future Swiss 1. electricity system?
- 2. What is the need for flexibility in the projected Swiss electricity system?
- 3. Who provides the required flexibility?
- What are the macroeconomic and environmental 4. impacts of the future Swiss electricity system?

We analyze three scenarios (Baseline, Nuclear 60, High Flexibility) of the future Swiss power system.

Simulated scenarios

Baseline

- Includes the projected development of input parameters (e.g., 50 year lifetime of nuclear power plants)
- Represents the status quo (i.e., in place and planned) of the policy framework (e.g., financial subsidies for PV systems)

Energy Science Center (ESC)

Nuclear 60

- Reflects the discussion about the nuclear power phase-out
- Assumes a lifetime of 60 years for nuclear power plants
- Swiss law forbids the construction of new and fundamental modifications to existing nuclear plants
- However, existing plants can operate as long as they fulfill the conditions for safe operation

Nuclear power plant/reactor	Capacity	Operation since	Phase-out in year (runtime 50 years)	Phase-out in year (runtime 60 years)
Beznau 1	365	1969	2019	2029
Beznau 2	365	1972	2022	2032
Mühleberg (KKM)	355	1972	L	-
Gösgen (KKG)	1060	1979	2029	2039
Leibstadt (KKL)	1220	1984	2034	2044

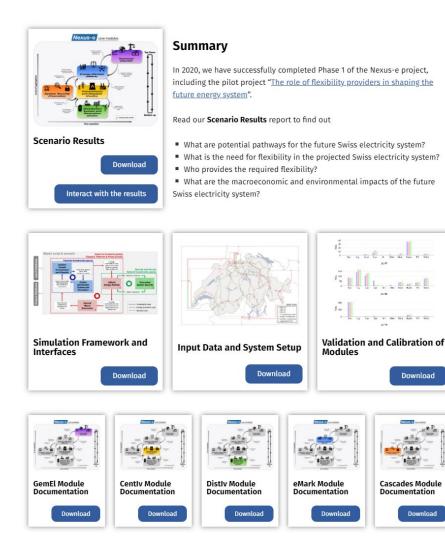
Table 6: Overview nuclear power phase out under 50 and 60 years of lifetime

High Flexibility

- Reflects the discussion on the impact, value and uncertainty of an increased supply of distributed flexibility in the power system and
- Assumes 50% lower battery costs and 100% higher demand-side management potential for 2030-2050
- Battery costs: 200 1400 €/kWh [1], uptake of electric vehicles crucial
- Demand side management potential:
 0.6 1.15 GW today, potential increase to 2.5 GW by 2030 [2][3]; general electrification crucial

[1]: N Lebedeva. Li-ion batteries for mobility and stationary storage applications. Publications Office of the European Union, 2018.

[2]:André Vossebein, Stefan Muster Muster, Ueli Betschart, and Beat Kölliker. Studie «Potential Demand Side Management in der Schweiz», 2019.


[3]: Verband Schweizerischer Elektrizitätsunternehmen. Themenpapier 44: Flexibilität, Fokus Demand Side und Energieerzeugungsanlagen auf Netzebene 7, 2019. 6

Web Viewer: https://nexus-e.org/results-flexibility-providers/

Envisioned development of the Nexus-e platform

"Im derzeit sehr dynamischen energiepolitischen Umfeld braucht es zuverlässige Analysetools, um einen

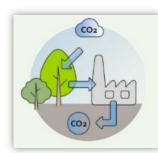
https://energeiaplus.com/2021/01/21/die-energiezukunft-modellieren-wie-sich-nexus-e-und-die-energieperspektiven-2050-ergaenzen/)

Download

Download

Envisioned development of the Nexus-e platform

Envisioned Extensions


CH2040: Systems analysis to support rapid complete Swiss decarbonization

③ Project period: 2020-2021

Partner(s): Prof. Dr. Anthony Patt (ETHZ CP)

We analyze the feasibility of the Swiss decarbonization by combining the detailed representation of the Swiss electricity market of Nexus-e with the pan-European, energy sector-wide perspective of Calliope, an energy system model developed by the Climate Policy group at ETH Zurich. The collaboration with Calliope will provide Nexus-e with new scenarios of electricity demand and energy system cost. Calliope in turn profits from Nexus-e's feedback about what its assumptions about generation capacities mean for electricity markets and for the Swiss transmission grid.

Read more ...

The role of bio-energy with carbon capture and storage to deliver net-zero emissions in Switzerland

() Project period: 2021-2022

🏖 Partner(s): Prof. Dr. Marco Mazzotti, Dr. Lorenzo Rosa

Negative emission technologies will likely play a critical role in reaching the goal of netzero carbon emissions. In this project, we will analyze the technical and environmental feasibility of carbon removal with Bio-Energy with Carbon Capture and Storage (BECCS), based on the availability of biomass, bioenergy potential, and of the infrastructure for CO2 capture and sequestration.

Read more ...

New scenarios

 Net-zero energy system in Switzerland and neighboring countries

New/Extension of modules

- Model full energy system
 - electrification of the mobility and building sector
 - sector coupling with industry
- Increase the level of detail of the European power system
- Expand system security modelling (e.g., risk-index based dispatching)
- Coordinated expansion planning for generation and transmission
- Additional macro economic assessments

PO:

Gabriela Hug

Research Center for Power System Lab Energy Networks (FEN) (PSL) hug@eeh.ee.ethz.ch demirayt@ethz.ch +41 44 633 81 91 +41 44 632 41 85

Researchers:

Jared Garrison FEN garrison@fen.ethz.ch+ 41 44 633 46 33

Pls:

Turhan Demiray

Blazhe Gjorgiev RRE gblazhe@ethz.ch +41 44 633 88 69

Project Management & Software:

Florian Landis CEPE landisf@ethz.ch

+41 44 632 41 95

Elena Raycheva PSL & ESC elena.raycheva@esc.ethz.ch +41 44 633 89 69

Energy Science Center (ESC) schaffner@esc.ethz.ch +41 44 632 50 38

Thank you for your attention.

PSL

Xuejiao Han xuhan@eeh.ee.ethz.ch +41 44 632 53 72

Energy

Center

Science

Power Systems Laboratory

RESEARCH CENTER FOR ENERGY NETWORKS FORSCHUNGSSTELLE ENERGIENETZE

Marius Schwarz D-MTEC & ESC mschwarz@ethz.ch +41 44 633 80 48

Xuqian Yan ESC xuqian.yan@esc.ethz.ch

mfilippini@ethz.ch +41 44 632 06 49

Chair of Energy and

Massimo Filippini Public Economics (EEPE)

Giovanni Sansavini Reliability and Risk Engineering (RRE) sansavig@ethz.ch +41 44 632 50 38

Please find the project reports and visualization tool

Marius Schwarz

on: www.nexus-e.ethz.ch

mschwarz@ethz.ch