Zurich University of Applied Sciences

School of Management and Law

Buffering Volatility: Storage Investments and Technology-Specific Renewable Energy Support

Jan Abrell, Sebastian Rausch, Clemens Streitberger

Energiefoschungsgespräche Disentis 2020, 23 January 2020, Kloster Disentis

Background

- Carbon mitigation in the electricity sector is a major concern of climate change regulation
- Renewable energy (RE) support led to large increase in wind and solar capacities
- EU Energy Roadmap 2050 foresees RE share of 64 to 97%

How to integrate such high amounts of RE into the electricity system?

Renewable Energy (RE) and Integration Cost

- Renewable energies are
 - variable

➔ Profile cost

- uncertain

→ Balancing cost

- location specific
 - ➔ Congestion cost

Schematical overview

Source: Amprion.

Deficit

Research Question: How to deal with profile cost?

- Two major options to match RE supply and demand profile
 - Storage facilities
 - Optimize RE mix
- Numerical model of German electricity market to answer the question

To what extent integration cost can be reduced modifying the design of RE support?

Related Literature and Contribution

- Renewable support policy
 Abrell et al. (2019), Wibulpolprasert (2016), Fell & Linn (2013)
- Storage and renewable energies
 Zerrahn et al. (2018), Sinn (2017)
- Integration cost of renewables
 Gorwrinsankaran et al. (2016), Hirth et al. (2015)
- Storage and emissions
 Helm & Mier (2018), Carson & Novan (2013), Crampes & Moreaux (2010)

This paper

Technology differentiated renewable support to avoid costly storage investments

- Motivation
- Numerical Approach
- Results
- Summary and Conclusions

Numerical Electricity Market Model: Overview

School of Management and Law

Model Assumptions: Demand and Conventionals

- General assumptions
 - German electricity market 2014
 - Hourly resolution with two weeks per season
- Inelastic demand

- One conventional technology
 - Increasing production cost
 - Constraint by capacity
 - No investments

Conventional Supply Curve

Model Assumptions: Storage and Renewables

- Storage

- Constraint by
 - storage capacity
 - turbine capacity
- Efficiency: 75%

- Renewable Energies
 - Wind and solar power
 - Zero production but investment cost
 - Exogenous profiles

Model Assumptions and Calibration: Government

- Government implements renewable premium
- Renewable generation receive premium and market price
- Integration cost
 - System operator allowed to curtail renewable energies
 - Premium always paid to investor
 - Unused generation potential
 additional cost
- Finding optimal premium
 MPEC solved using grid search

Scenarios

- How to design renewable premium
 - to reach 70% renewables?
 - to minimize integration cost, i.e., curtailment?
- Should premium be differentiated?

How does optimal design depends

- Motivation
- Numerical Approach
- Results
- Summary and Conclusions

Storage Capacity and Curtailment

Storage capacity (GWh)	Solar Generation Share (%)	
	Neutral	
Existing	39.5	
Existing*5	42.6	
Existing*10	45.4	
Unlimited	49.9	

Storage capacity (GWh)	Solar Subsidy (% of wind subsidy)
Existing	62
Existing*5	74
Existing*10	84
Unlimited	91

Storage Capacity and System Cost

How much Storage is needed?

- Motivation
- Numerical Approach
- Results

Summary and Conclusions

Summary and Conclusions

- To what extent integration cost can be reduced modifying the design of RE support?
- Storage requirement to achieve 70% of RE in Germany is rather modest
- Technology-differentiation of RE support helps to avoid costly storage investments
- Policy design should reflect system integration cost

- Motivation
- Numerical Approach
- Results
- Summary and Conclusions
- Backup Slides

Price Development

Figure 5: Hourly electricity price for a 70% RE target with a technology-neutral RE subsidy and increasing storage capacity measured in multiples of the currently (i.e., year 2014) installed level.

Stored Energy

Figure 6: Electricity generation stored over the course of a year. The horizontal lines indicate the maximum storage capacity available in the two cases of constrained (377 GWh) and unlimited storage capacity. Under unlimited storage, the capacity of 6032 GWh is never exhausted.