Zurich University of Applied Sciences

Die Bedeutung von Ammoniak für die CO₂-freie Schweiz

Peter Flohr, Thomas Schütte

Vortrag am Disentis Symposium 28.01.22

Contents

Zurich University of Applied Sciences

Hydrogen yes, but why ammonia?

Technical & economic analysis

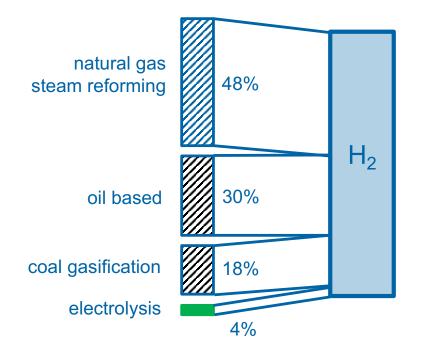
Assessment for Switzerland

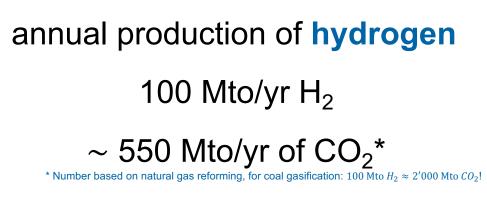
Conclusion

Hydrogen Is it key for the path towards a CO₂-free future?...

Zurich University of Applied Sciences

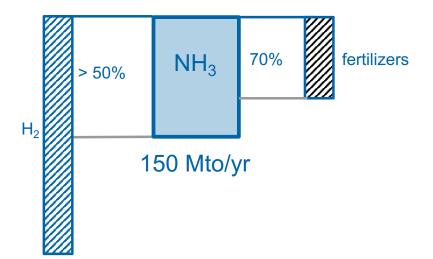
"I believe that water will one day be employed as fuel, that hydrogen and oxygen which constitute it, used singly or together, will furnish an inexhaustible source of heat and light, of an intensity of which coal is not capable ...


... water will be the coal of the future." Jules Verne (1874)


Hydrogen ...or is it part of the CO₂ problem?

Zurich University

of Applied Sciences



... hydrogen is the coal of today!

Ammonia The main use of hydrogen are fertilizers

Zurich University of Applied Sciences

annual production of ammonia

- 150 Mto/yr NH₃
- mostly used for fertilizers
- 2% of global energy consumption
- CO₂ emissions of Ammonia industry are equivalent to Australia's total annual emissions

Ammonia Established production process

Zurich University of Applied Sciences

Catalytic production (Haber-Bosch)

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$ pressure, temperature

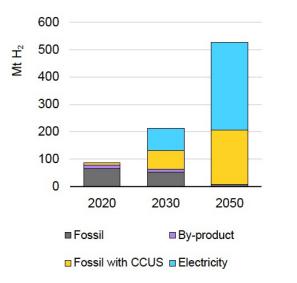
- Nobel prize 1918
- Mainly used for fertilizers (also pharmaceuticals, plastics, textiles, explosives)

Vemork power station, Norway (largest power plant world-wide, when it opened in 1911)

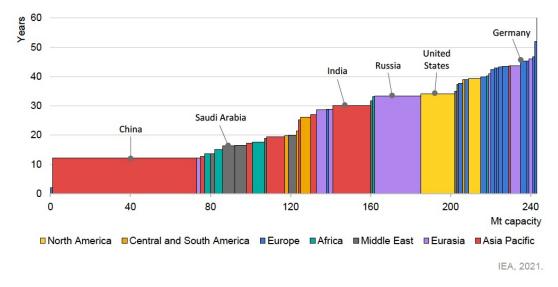
Vermork was for a long time the largest facility of **green ammonia**

Hydrogen & Ammonia Basic properties and facts

	Hydrogen	Methane	Ammonia	Diesel
density (kg/m ³)	0.09 / 70 *	0.657	0.86 / 682 **	840
heating value (MJ/kg)	120	50	22.5	45
energy content (kWh/kg)	33	13.9	6.4	11.9
	* liquid at -253°C		** liquid at -33°C	


- properties
 - hydrogen: light, highly flammable, difficult to store and transport
 - ammonia: poisenous, established storage and transport infrastructure
- use
 - hydrogen: ammonia, refinery gas, methanol
 - **ammonia**: fertilizers, precursor of all nitrogen compounds
- main producers and consumers
 - China (30%)
 - USA, Europe, Russia, Canada, ...

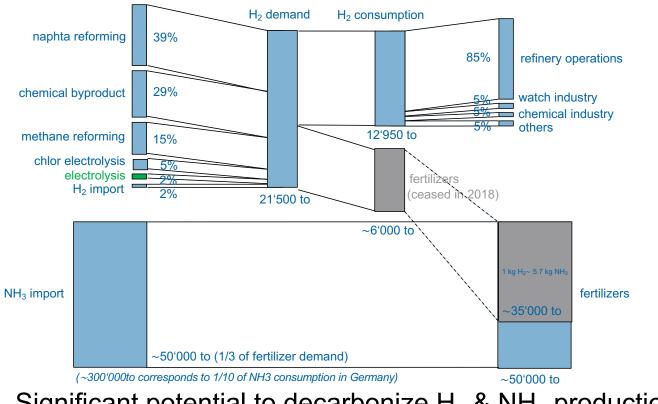
Hydrogen & Ammonia Outlook globally



Zurich University

Forecast of Hydrogen growth

Today's age of Ammonia plants



Growth of hydrogen may not necessarily lead to CO₂ reduction!

2022-01-28, Disentis, Peter Flohr, floh@zhaw.ch

Sources: IEA 2019 The Future of Hydrogen; IEA 2021, Ammonia Technology Roadmap

Hydrogen & Ammonia Situation in Switzerland

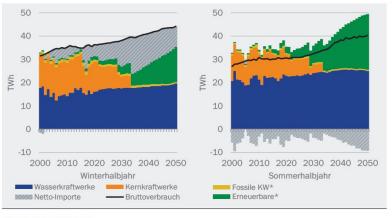
Zurich University of Applied Sciences

Significant potential to decarbonize H₂ & NH₃ production in Switzerland

2022-01-28, Disentis, Peter Flohr, floh@zhaw.ch

Source: Swiss Federal Office of Energy 2018, Swiss Hydrogen Production and Demand. Own estimates of fertilizer/NH₃ consumption

The energy transition challenge


manage seasonal fluctuations of electricity production

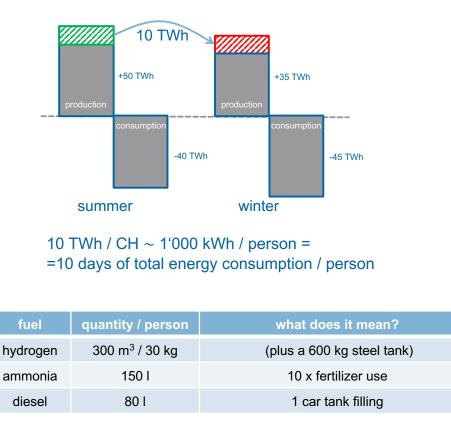
Zurich University

Main challenges from today to 2050

	Europe	Switzerland
Decarbonize average production (electricity only)	71% based on carbon fuels	replacement strategy for nuclear
Manage seasonal fluctuations (electricity only)	only possible with negative CO ₂ emissions	BfE 2050 strategy contains energy deficit

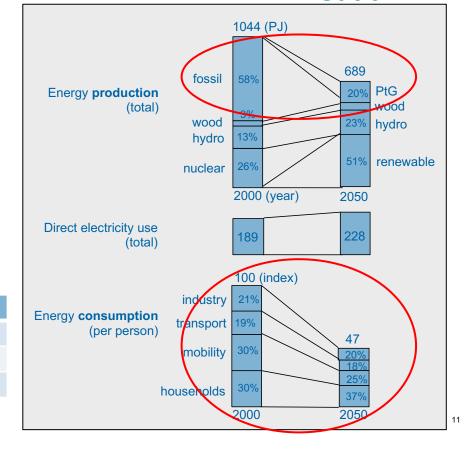
^{*} gekoppelt und ungekoppelt

gap closure of **10 TWh/yr**:


- store excess energy in H₂ during summer
- import excess wind energy in winter (to avoid efficiency losses of factor 2.5)

The energy transition challenge seasonal fluctuations & total energy consumption

School of Engineering

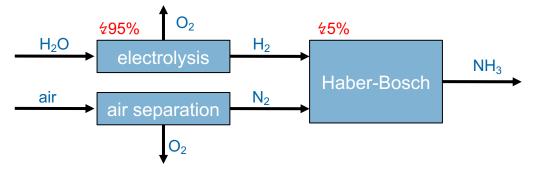

Zurich University

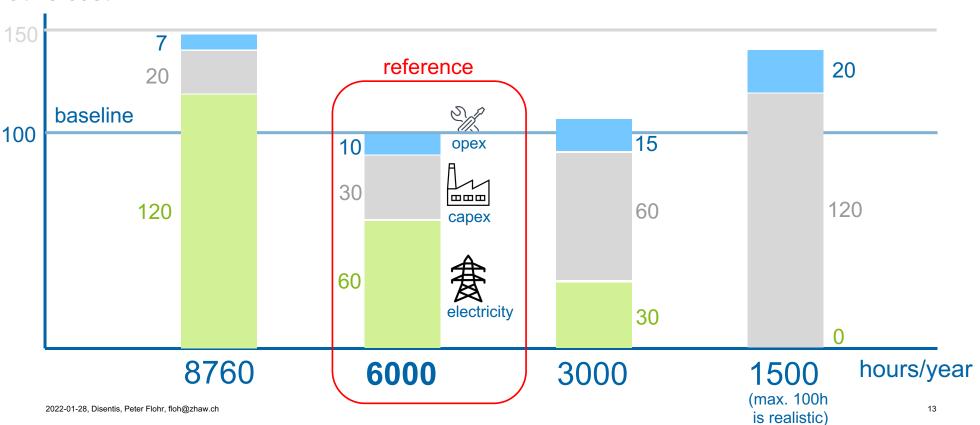
of Applied Sciences

2022-01-28, Disentis, Peter Flohr, floh@zhaw.ch

Source: Swiss Federal Office of Energy 2020, Energieperspektiven 2050+

Hydrogen and ammonia production main cost drivers


Zurich University of Applied Sciences

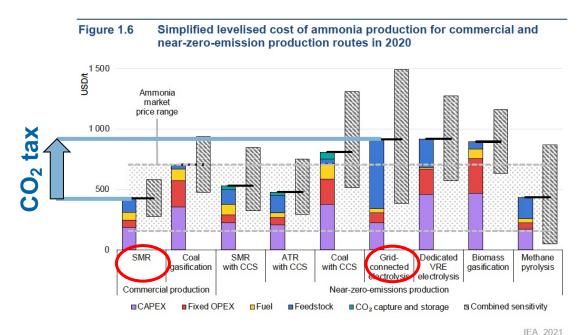


hydrogen production methods

sha	are	method	cost (\$/kg)	fuel cost	capex/opex cost
	80%	steam reforming	~2	75% (CH ₄)	25%
60%	18%	gasification	~2.5	50% (coal)	50%
	2%	electrolysis	~5 (2 10)	60-80% (electricity)	20-40%
40%		(byproduct)	0	negligible	

ammonia production (electrolysis & Haber-Bosch)

Ammonia production cost


Influence of electricity price & operation hours

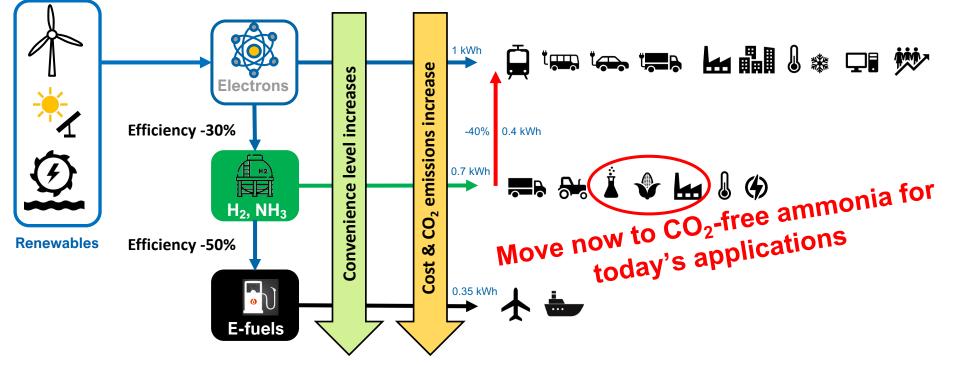
relative cost

Ammonia production cost

Influence of production method & CO₂ tax

method	cost (\$/to)	CO ₂ tax (\$/to) for parity	
steam reforming	450 (200-700)	350 (0-1000)	
electrolysis	900 (400-1500)		
		1 to $NH_3 \sim 1.3$ to CO_2	

- Breakeven on average only reached at 350 \$/to CO₂
- This tax level is currently predicted for 2050 or later
- Due to large variability in production cost the commercial production is possible today


2022-01-28, Disentis, Peter Flohr, floh@zhaw.ch

Efficiency matters in a renewable energy system Framework for best energy use

Zurich University of Applied Sciences

CO₂ emissions will decrease only with a hierarchy of applications

Concluding Remarks

Situation today:

- 1to $H_2 \sim 5-20$ to CO_2 : today's use of H_2 and NH_3 needs to be decarbonized first
- the potential in Switzerland for decarbonization for hydrogen and fertilizers is large!
- the use of low-cost excess energy alone is not commercially viable

Situation in future:

- Break-even for CO_2 -free NH_3 is at 350 \$/to CO_2 , with huge variability. So start now!
- H₂ and NH₃ are equivalent in cost and will co-exist
- NH₃ is preferred for storage & over distances
- Direct use is always better than indirect use due to efficiency losses

