Cost Distribution and Equity of Climate Policy in Switzerland

Florian Landis - ladi@zhaw.ch

ZHAW Center for Energy and the Environment
27.1.2023

Motivation

- Compare different policy designs:
- actual (past) policy proposals in Switzerland
- alternative "typical proposals by economists"
- Focus on revenue recycling
- Illustrate both efficiency and equity consequences and make trade-off using Atkinson index.

Model: Coupling

Computable General Equilibrium (CGE) model

- market interactions
- impacts on income and spending power

Micro-simulation (MS)

- heterogeneous households
- empirically established income and spending patterns

Coupling through iterative process ${ }^{1}$

[^0]
Model: CGE

$\mathrm{F}=$ time endowment
$\mathrm{L}=$ Labor supply
$\mathrm{K}=$ Capital
$\mathrm{G}=$ Government demand $\mathrm{Y}_{i}=$ Production of good i
$\mathrm{X}_{i}=$ Export of good i
$\mathrm{A}_{i}=$ Armington
production of good i
$\mathrm{M}_{i}=\operatorname{Import}$ of good i

Model: Households

Data:

- survey of 9734 households (3000+ per annual wave)
- income by sources
- expenditures by categories
- household composition, house-owner dummy, etc.

Model:

- Fix supply of labor and capital
- Price responsive household demand maximizes utility from consumption at given income

Policy target

Reference scenario (BAU) in 2050:

- ETS with permit price of $280 \mathrm{CHF} / \mathrm{tCO}_{2}$
- carbon tax of $120 \mathrm{CHF} / \mathrm{tCO}_{2}$ on "thermal fuels" only
- national CO_{2} emissions in 2050: 24.9 Mt

Policy target of 1 tonne CO_{2} per capita in 2050:

- $8.1 \mathrm{MtCO}_{2}$
- policy instruments tax based but scenario dependent

Policy target in 2035 (interpolated):

- $21.8 \mathrm{MtCO}_{2}$ (from 29.5 Mt in BAU)

Policy scenarios

	uniform carbon tax	ETS + uniform carbon tax	ETS + differentiated carbon tax
lump-sum rebates	uni_LS	etsUni_LS	etsDiff_LS ${ }^{2}$
labor tax reductions VAT reductions	uni_LT	etsUni_LT	etsDiff_LT

${ }^{2}$ etsDiff_LS: resembles current policy proposals

Mean equivalent income (MEI)

$$
\mathrm{MEI}=\frac{\sum_{h} w_{h} s_{h} \frac{Y_{0, h}+E V_{h}}{\sqrt{s_{h}}}}{\sum_{h} w_{h} s_{h}}
$$

where

- w_{h} are statistical weights,
- s_{h} household size,
- $Y_{0, h}$ household income in BAU, and
- $E V_{h}$ equivalent variation
of household h.
Note: redistributing income for small to large households improves MEI.

Results: MEI in 2035

Percentage change of MEI from BAU for different scenarios:

	uniform	etsDiff	etsUni
LS	-0.419	-0.353	-0.414
LT	-0.269	-0.215	-0.254
VAT	-0.502	-0.438	-0.506

Note: Choices of recycling schemes and carbon tax design that yield the highest MEI are in bold, choices that yield the lowest MEI in gray font.

Results: MEI in 2050

Percentage change of MEI from BAU for different scenarios:

	uniform	etsDiff	etsUni
LS	-2.614	-2.814	-2.743
LT	-2.469	-2.683	-2.597
VAT	-2.414	-2.632	-2.542

Note: Choices of recycling schemes and carbon tax design that yield the highest MEI are in bold, choices that yield the lowest MEI in gray font.

Distribution of policy impacts - uni_LS

A Welfare impacts
of 10TPC_LS in 2035

B

Distribution of policy impacts - uni_LT

D

Social welfare (Atkinson index)

The Atkinson index ${ }^{3}$ allows modification of the MEI to define social welfare including inequality aversion:

$$
\mathrm{SW}=\mathrm{MEI} \times\left(1-A_{\varepsilon}\right),
$$

where

$$
A_{\varepsilon}=1-\frac{1}{\operatorname{MEI}}\left[\frac{\sum_{h} w_{h} s_{h}\left(\frac{Y_{0}+E V_{h}}{\sqrt{s_{h}}}\right)^{1-\varepsilon}}{\sum_{h} w_{h} s_{h}}\right]^{\frac{1}{1-\varepsilon}}
$$

and $\varepsilon=1.25$ is a measure of inequality aversion.

[^1]
Results: Social welfare in 2035

Percentage change of social welfare from BAU for different years and scenarios.

	uniform	etsDiff	etsUni
LS	-0.483	-0.534	-0.517
LT	-0.825	-0.849	-0.881
VAT	-0.812	-0.835	-0.863

Note: Choices of recycling schemes and carbon tax design that yield the highest social welfare are in bold, choices that yield the lowest social welfare in gray font.

Results: Social welfare in 2050

Percentage change of social welfare from BAU for different years and scenarios.

	uniform	etsDiff	etsUni
LS	-1.873	-2.154	-2.051
LT	-2.188	-2.425	-2.319
VAT	-2.128	-2.344	-2.227

Note: Choices of recycling schemes and carbon tax design that yield the highest social welfare are in bold, choices that yield the lowest social welfare in gray font.

Conclusions

- Taking inequality aversion into account changes policy ranking:
- MEI suggest differentiating taxes in 2035 and advises against per-capita lump-sum redistribution
- Social welfare with equity preference suggests taxing carbon uniformly and recommends per-capita lump-sum transfers
- Efficiency-equity trade-off in revenue recycling alone
- Sensitivity analysis suggests that for $\varepsilon \in(0.85,1.85)^{4}$ the policy ranking for the 1 tonne per capita target and the years 2035 and 2050 does not change.
- Recycling of revenue is similarly important as tax differentiation.

[^2]
Thank you for your attention

Florian Landis - ladi@zhaw.ch

ZHAW Center for Energy and the Environment

27.1.2023

Income

Expenditure shares for reduced-VAT goods

A BAU expenditure of reducedVAT goods in 2015

Labor share in income

Household size

Household size in base year data

[^0]: ${ }^{1}$ Thomas F. Rutherford and David G. Tarr (2008). "Poverty effects of Russia's WTO accession: Modeling 'real' households with endogenous productivity effects". In: Journal of International Economics 75.1, pp. 131-150. Doi: 10.1016/j.jinteco.2007.09.004.

[^1]: ${ }^{3}$ Anthony B. Atkinson (1970). "On the measurement of inequality". In: Journal of Economic Theory 2.3, pp. 244-263. DOI: 10.1016/0022-0531(70)90039-6.

[^2]: ${ }^{4}$ R. Layard, G. Mayraz and S. Nickell (2008). "The marginal utility of income". In: Journal of Public Economics. Special Issue: Happiness and Public Economics 92.8, pp. 1846-1857. DOI: 10.1016/j.jpubeco.2008.01.007.

