

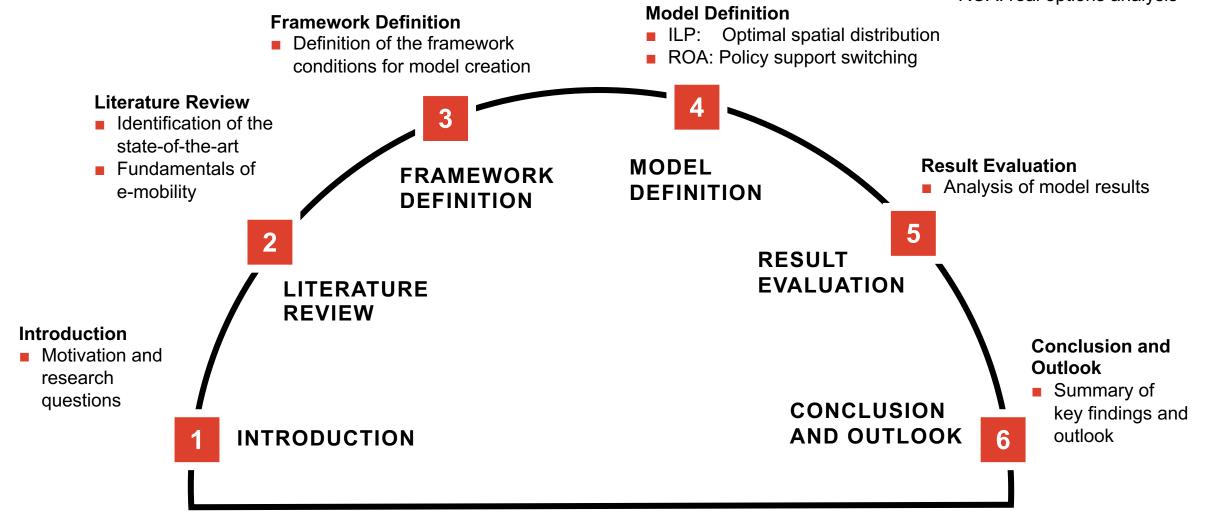
A Real Options Analysis of the Siting and Cost-Efficient Layout of **Charging Infrastructure for Fuel Cell and Battery Electric Vehicles**

Lars Wohlan¹, Reinhard Madlener^{2,3,4}, Jan Martin Specht²

- ¹ RWTH Aachen University
- ² Chair of Energy Economics and Management, FCN-ECO
- ³ NTNU, Department of Industrial Economics and Technology Management
- ⁴ JARA Energy

E.ON Energy Research Center

Norwegian University of Science and Technology



Energiegespräche 2023, Disentis (Jan 25-27, 2023)

FCN | Future Energy Consumer Needs and Behavior

Presentation outline

ILP: integer linear programming ROA: real options analysis

Research questions

Two research questions were derived based on a literature review

Motivation

- Greenhouse gas emissions: Germany aims at reducing GHG emissions by min. 55%; mobility is responsible for around 20% of them (UBA 2021)
- Political targets: German government has set a target of 10 million e-vehicles and 1 million publicly accessible charging points by 2030 (EU 2021)
- Charging infrastructure: Massive investment in BEV and FCEV infrastructure is necessary for achieving the set targets

State-of-the-Art in Related Literature

3

- Literature on spatial distribution: A sharp increase in publications on BEVs can be observed in recent years (Pagani et al. 2019)
- Comparative economic analysis literature: Studies on competing charging infrastructure are still rare and hard to compare

Key question: In light of path dependencies and technological lock-ins, which alternative vehicle charging infrastructure/s should government support over time?

Research Question #1

What is the optimal spatial distribution of the public charging infrastructure for BEVs or FCEVs in the ENSURE model region* for different e-mobility diffusion dynamics?

Research Question #2

What economic costs and options for action result from the spatial distribution of charging infrastructure for BEVs and FCEVs from a policy maker's perspective (in light of the existing emobility policy goals)?

* District of Steinburg (Schleswig-Holstein); cf. www.ensure.de

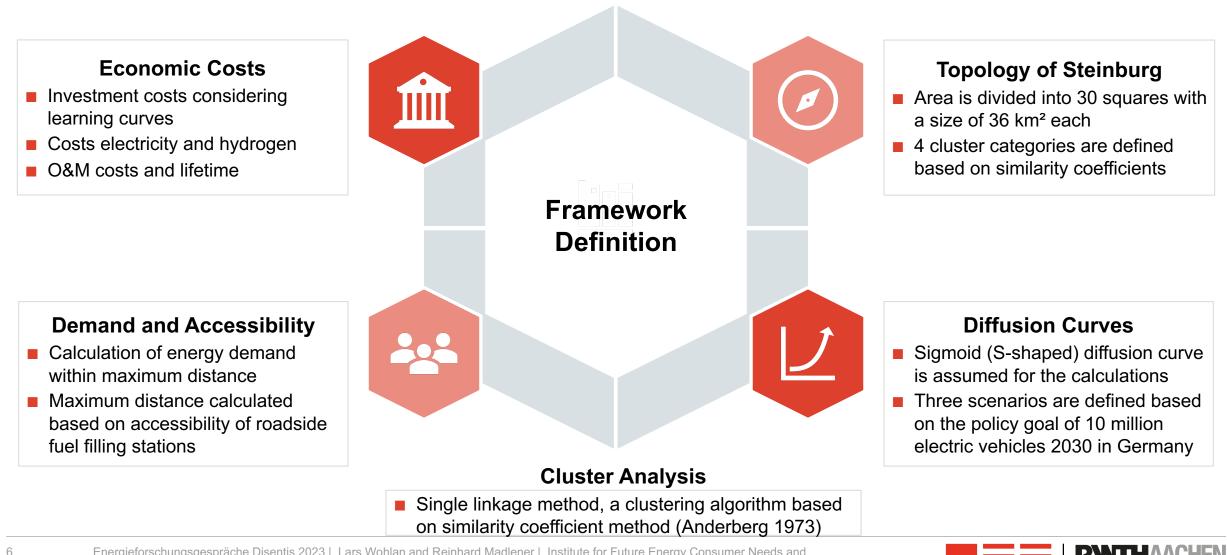
Aim & Scope

- Considerable literature comparing the economics of BEVs vs. FCEVs
- Much less literature on (competing) vehicle fueling/charging infrastructure
- In our research we tackle the following research gap:
 - 1. Determination of the **optimal spatial distribution and density** of public BEV and FCEV charging stations (in different spatial settings, from rural to urban/cities)
 - 2. Simulation of **market diffusion scenarios** for the competing charging infrastructures
 - 3. Real options (binomial tree) **switching model** to determine the **optimal timing to switch policy support** for one or the other charging infrastructure (thus further fostering or breaking a technological lock-in situation)
 - 4. Application is to a **district in Schleswig-Holstein**, Northern Germany Steinfurt: 79,117 vehicles
 - 5. Derivation of **policy implications and recommendations**

Comparison BEV and FCEV

5

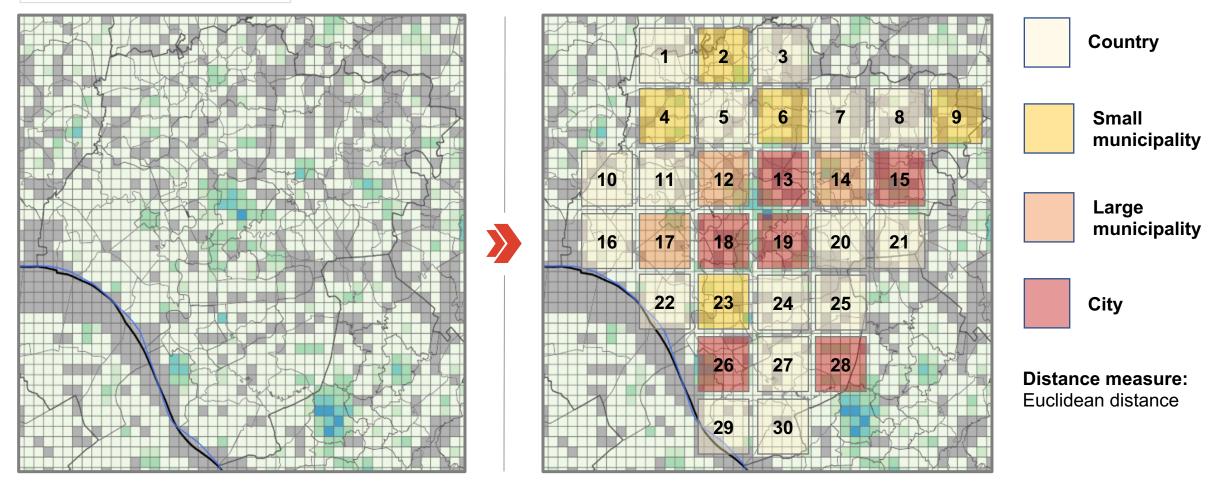
Refueling process and charging process are different between BEVs and FCEVs


	Battery Electric Vehicle (BEV) ^{4,5}	Fuel Cell Electric Vehicle (FCEV)
Energy source	Electricity	Hydrogen
Energy system	Battery ultracapacitor	Fuel cells
Charging modes	Public or private (home) charging	Public hydrogen filling station
Electric drive concept	Battery +- Battery Electric motor	Image: state of the
Charging duration	0.25 – 8 h	3 – 5 min
Range	Up to 600 km	Up to 756 km

Underlying framework data

Framework data for the creation of the models can be divided into four main categories

Energieforschungsgespräche Disentis 2023 | Lars Wohlan and Reinhard Madlener | Institute for Future Energy Consumer Needs and Behavior (FCN) | Chair of Energy Economics and Management (Prof. Madlener) | January 25, 2023


E.ON Energy Research Center

District clustering

Squares⁶ were clustered and the location was recorded using Euclidean distances

Topology of Steinburg⁶

Methodical approach

8

A spatial distribution model and a real options model are used to tackle the two research questions

Spatial dist	ribution model	Real opt	ions model
Investment costs	Charging demand	Learning curves through experience	Market diffusion curves until 2050
Topology of the district of Steinburg	Accessibility of charging infrastructure	Economic framework data	Beta-Pert cost distribution
		·	

1 2 3 4 5 6 MODELLING

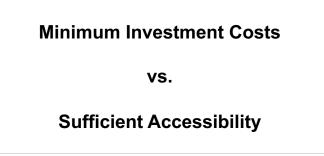
Spatial distribution model

The tradeoff of the model was defined considering the charge point utilization rates and the home charging share

Utilization Rates (FCEVs, BEVs) and Home Charging for BEVs

FCEVs

- Utilization rates for hydrogen stations used from an analysis of filling stations in the U.S.
- Value: 35% (van der Hoed 2013)


BEVs

- Values taken from a study in the Netherlands considering the difference between occupation and charging time (Kurz et al. 2019)
- Occupation: 32% Charging: 5%

Tradeoff Investigated

	Cluster	Pop. Share (%)	Home Charg. Share (%)
	City	55	45
h	Large municipality	14	70
	Small municipality	13	80
_	Country	18	90
	Total / average	100	Ø 61 ¹⁾

¹⁾ Transport & Environment (2020), Recharge: How many charge points will Europe and its Member States need in the 2020s.

Spatial distribution model

The objective function minimizes the investment costs for a charging infrastructure operator

Exemplary Formulas for BEVs

```
(1)
\min \sum_{i=0}^{n} (x_i \times station costBEV + y_i \times charging point costBEV) + \min \sum_{i=0}^{n} (a_i \times station costFCEV + b_i \times dispenser costFCEV)
```

(2)
$$shareBEV * needBEV_i \le \sum_{\forall j \in (j \mid d_{ij} \le maxdistancebev_i)} b_{j \forall i \in I}$$

(3) $\sum_{i=0}^{n} b_i \ge minnumberchargingpointsBEV * shareBEV$

(4)

10

 $b_i \leq maxchargingpointsperstationBEV * a_i$

Explanation

Objective function

minimizes the costs for the construction of the charging infrastructure; a_i indicates the number of charging stations opened in node *i* and b_i the number of charging points

Constraint 1

ensures that the demand for charging points at node *i* is covered within the maximum distance

Constraint 2

ensures that the required total number of charging points is reached

Constraint 3

ensures that the number of charging points per charging station is met; also ensures that charging points can only be opened if a charging station is available

1 2 3 4 5 6 MODELLING

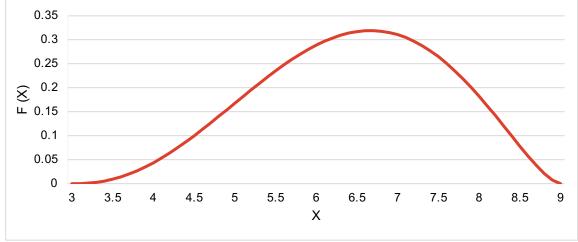
Real options analysis

Procedure for real options analysis requires a net present cost calculation and the selection of a distribution

Net Present Cost (NPC) Calculation

Calculation

- The calculated necessary charging infrastructure requirement from the spatial distribution model serves as the basis
- Three cost components are calculated
 - CAPEX: investment costs for charging infrastructure
 - OPEX: hydrogen / electricity prices
 - OPEX: O&M costs
- NPC results for the most probable scenario:

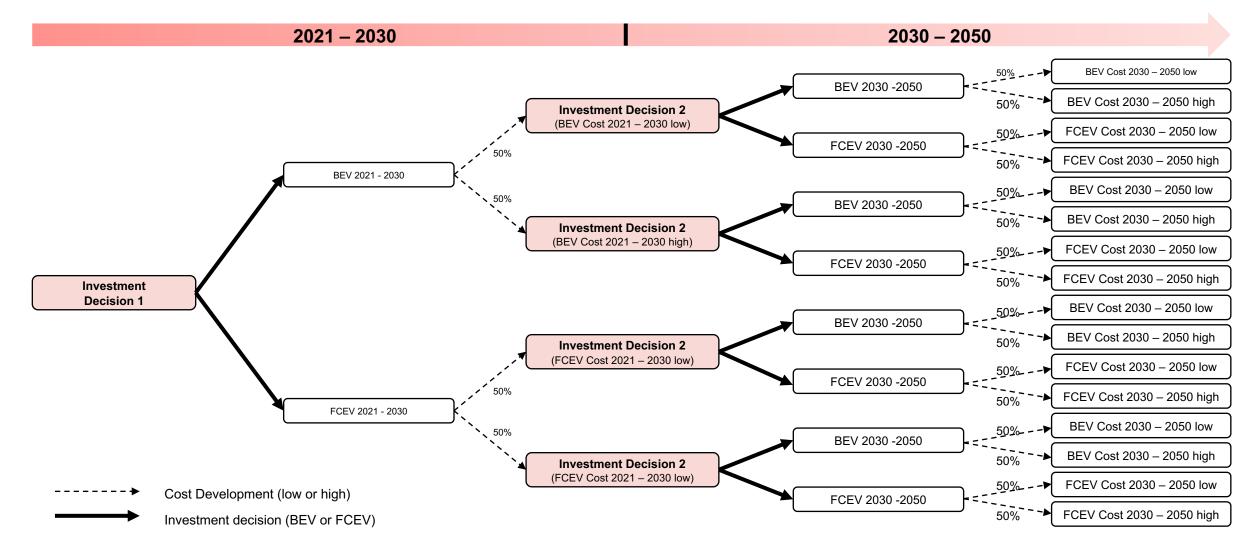

(million €)	BEV 2021-2050	FCEV 2021-2050
Infrastructure Cost	99	81
O&M Cost	66	40
Electricity Cost	405	706
Total	570	82

Beta-Pert Distribution for Up- and Down Factors

Distribution selection

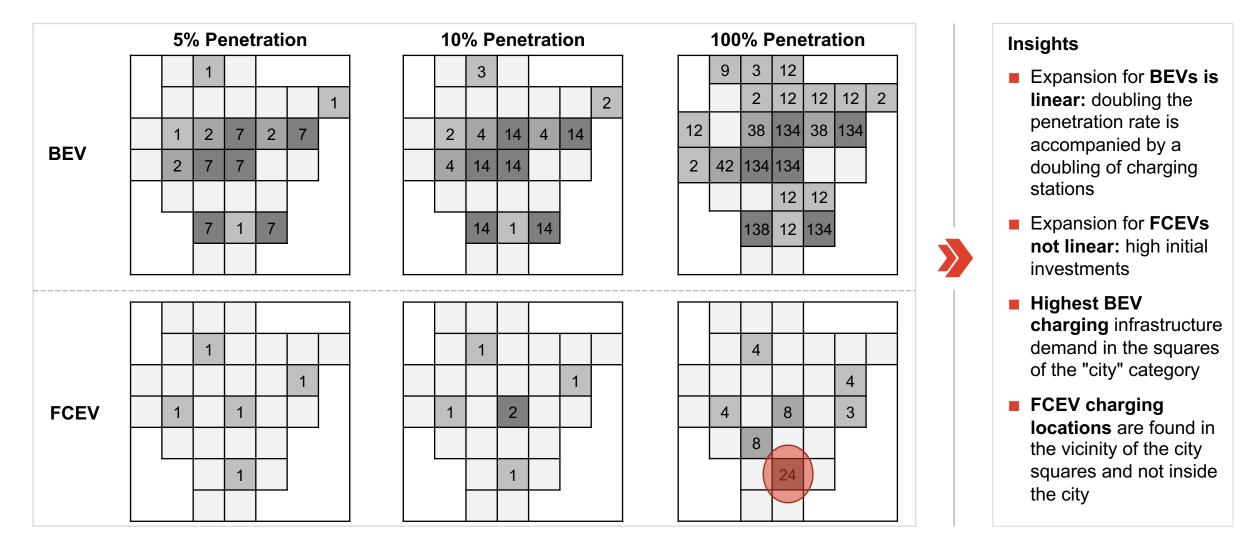
- Beta distribution was selected for the distribution of a cost function
- It considers, analogously to the triangular distribution, that cost distributions are usually asymmetrical
- Upper and lower quartiles are used as up- and down factors

Exemplary density curve of the PERT distribution



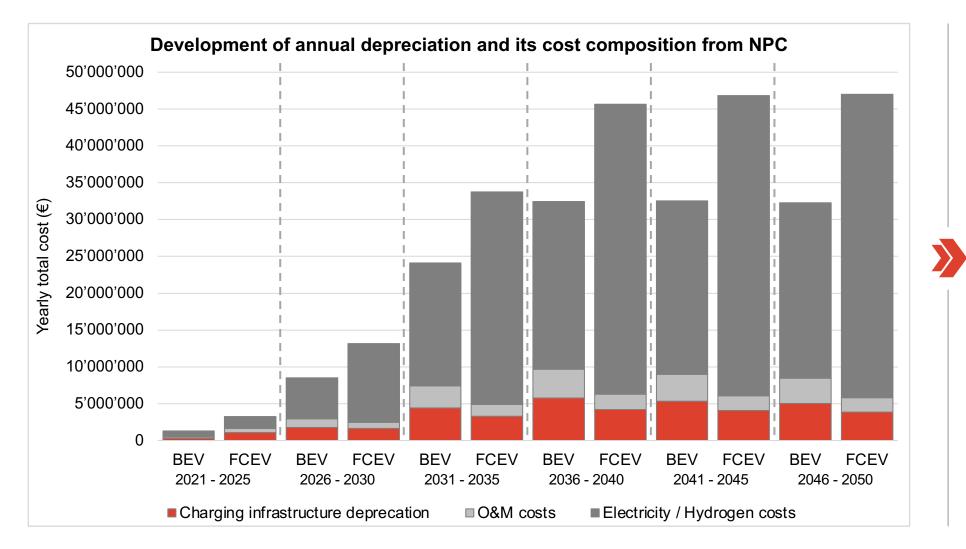
Real options analysis

The decision tree includes an option to switch for charging infrastructure expansion in 2030


Energieforschungsgespräche Disentis 2023 | Lars Wohlan and Reinhard Madlener | Institute for Future Energy Consumer Needs and Behavior (FCN) | Chair of Energy Economics and Management (Prof. Madlener) | January 25, 2023

Spatial distribution model results

A significantly lower number of dispensers is required due to shorter charging time and higher utilization



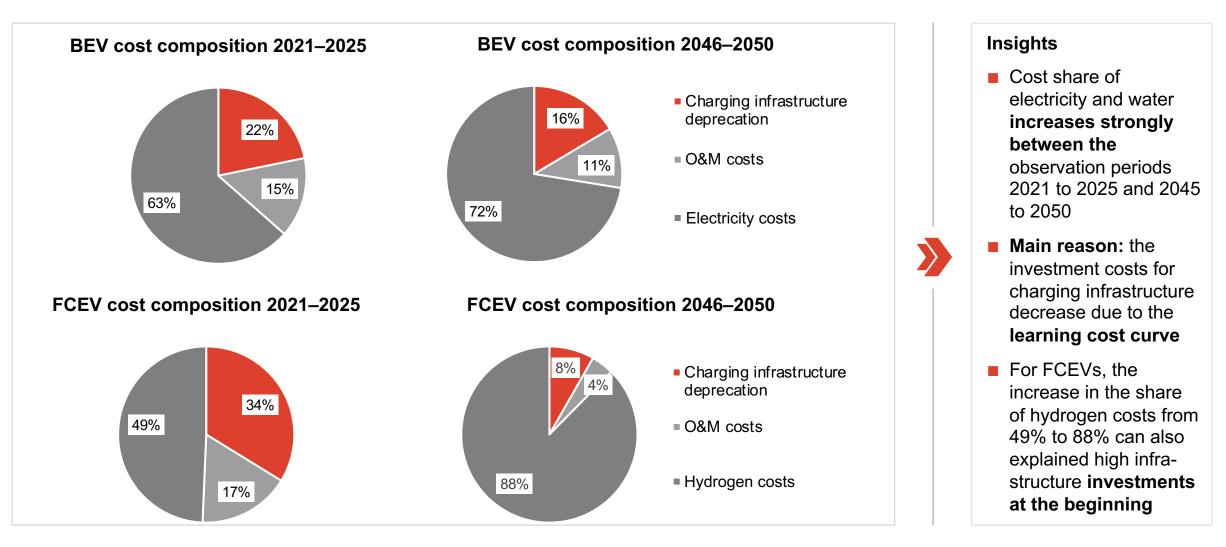
Energieforschungsgespräche Disentis 2023 | Lars Wohlan and Reinhard Madlener | Institute for Future Energy Consumer Needs and Behavior (FCN) | Chair of Energy Economics and Management (Prof. Madlener) | January 25, 2023

Net present cost calculation results

The pure charging infrastructure costs for FCEVs are lower whereas the total charging costs are higher

Insights

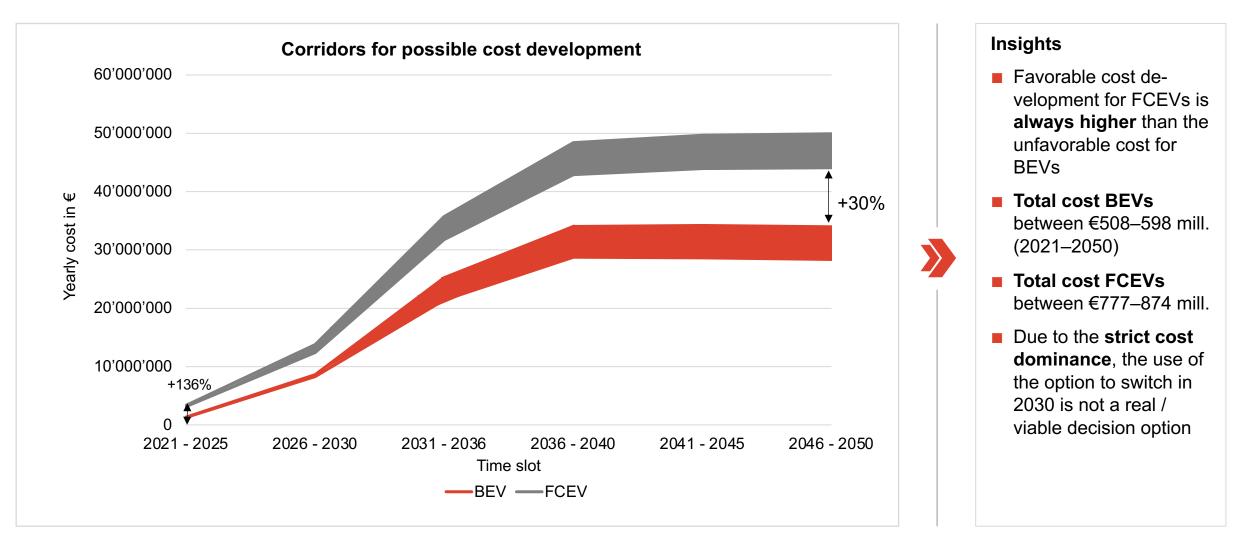
- Cost of charging for FCEVs is 149% higher from 2021 to 2025, it is only 46% higher from 2046 to 2050
- Costs of FCEV charging infrastructure are lower than the costs for BEV charging infrastructure (ignoring the costs for hydrogen or electricity)
- Home charging is included in the NPC calculation (61% of charging occurs at home)



Net present cost calculation results

15

→ Cost composition is dominated by electricity and hydrogen prices and the share increases in the long term



Real options analysis results

16

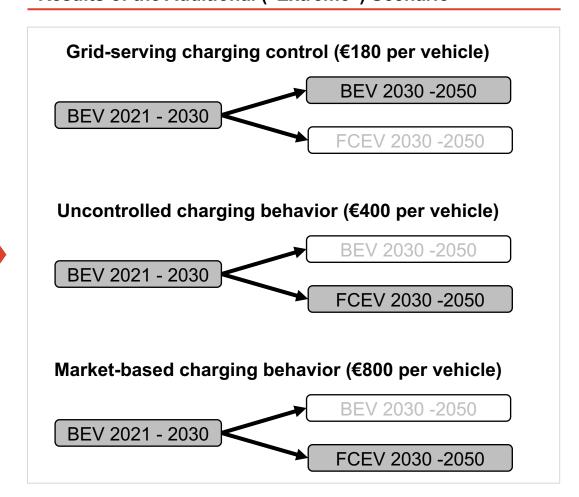
Due to strict cost dominance a use of the option to switch is not a real / viable decision option

Additional scenario results

Under certain conditions the use of the option to switch can make sense

Adjustments to the Framework Data

Adjustment electricity price

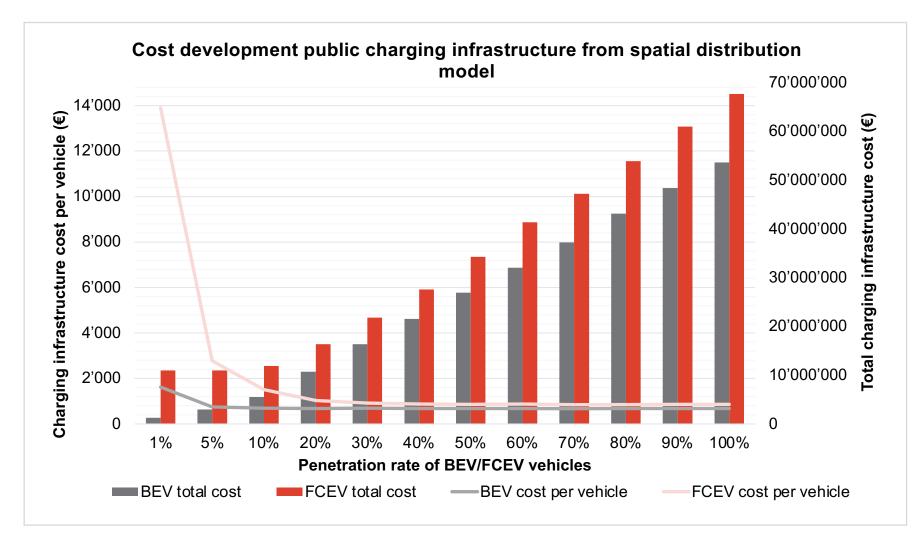

- A study commissioned by E.ON calculated an investment need of between €1.1–5.0 bn for integrating e-mobility (T&E 2020)
- Investment level depends on charging management: uncontrolled charging (€400 per vehicle); grid-friendly controlled charging (€180 per vehicle); market-based charging behavior (€800 per vehicle)

Adjustment hydrogen price: -60% production costs after 2030

	Hydrogen [€ / kg] Framework data ^{a,b}	Hydrogen [€ / kg] Additional scenario ^c
2021–2030 low	5.2	5.2
2021–2030 prob.	5.5	5.5
2021–2030 high	5.7	5.7
2031–2050 low	4.5	3.0
2031–2050 prob.	4.7	3.2
2031–2050 high	4.9	3.4

a IRENA (2020); b Reuß et al. (2019); c Hydrogen Council (2021)

Results of the Additional ("Extreme") Scenario



Energieforschungsgespräche Disentis 2023 | Lars Wohlan and Reinhard Madlener | Institute for Future Energy Consumer Needs and Behavior (FCN) | Chair of Energy Economics and Management (Prof. Madlener) | January 25, 2023

Backup slide: Spatial distribution model results

Public charging infrastructure for FCEVs is characterized by very high costs at low penetration rates

Insights

- Initial overview of the cost development of public charging infrastructure
- At 1% penetration rate for public charging infrastructure, costs are 750% higher for FCEVs than for BEVs
- At higher diffusion dynamics, values do converge
- At a penetration rate of 100%, public charging infrastructure for FCEVs is only 26% more costly than for BEVs

Summary and outlook

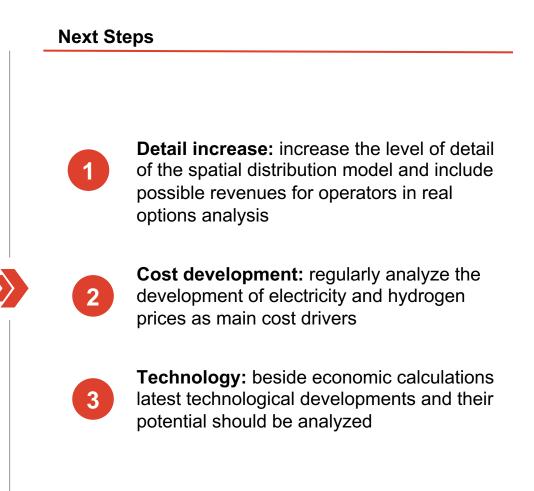
The key results provide a good basis for the further analysis and detailing of the spatial distribution

Key Results

Influence of penetration rates

- High investments in FCEV charging infrastructure are necessary to sufficiently cover user needs even at low FCEV penetration rates
- Pure infrastructure costs for FCEVs are lower at high penetration rates

Electricity and hydrogen as cost drivers


 Electricity and hydrogen costs dominate the total costs for the charging infrastructure

19

Necessary cost development hydrogen

Average production costs for hydrogen must fall into the range €1.2 to €1.7 per kg in the period 2031 to 2050

Contact:

Chair of Energy Economics and Management Institute for Future Energy Consumer Needs and Behavior (FCN-ECO) E.ON Energy Research Center Mathieustraße 10, 52074 Aachen, Germany **Prof. Dr. Reinhard Madlener** T +49 241 80 49 820 RMadlener@eonerc.rwth-aachen.de

http://www.fcn.eonerc.rwth-aachen.de

Energieforschungsgespräche Disentis 2023 | Lars Wohlan and Reinhard Madlener | Institute for Future Energy Consumer Needs and Behavior (FCN) | Chair of Energy Economics and Management (Prof. Madlener) | January 25, 2023

References cited

Wohlan L., Madlener R., Specht J.M. (2022). A Real Options Analysis of the Siting and Cost-efficient Layout of Charging Infrastructure for Fuel Cell and Battery Electric Vehicles, *FCN Working Paper* 15/2021 (under revision).

¹ UBA (2021a), Emissionsquellen [Online] URL: https://www.umweltbundesamt.de/themen/klimaenergie/treibhausgas-emissionen/emissionsquellen#energieverkehr [2021].

² BMU (2021), Förderung der Elektromobilität [Online] URL: https://www.bmu.de/themen/luft-laermverkehr/verkehr/elektromobilitaet/foerderung/ [2021].

³ Pagany, R., Ramirez Camargo, L., Dorner, W. (2019), A review of spatial localization method-ologies for the electric vehicle charging infrastructure, International Journal of Sustainable Transportation, 13(6), 433–449. 10.1080/15568318.2018.1481243.

⁴ Wong, K. P. (2009), Electrical engineering. Oxford: Eolss Publishers Co Ltd.

⁵ Robinius, M., Linßen, J., Grube, T., Reuß, M., Stenzel, P., Syranidis, K., Kuckertz, P., Stolten, D. (2018), Comparative analysis of infrastructures: hydrogen fueling and electric charging of vehicles.

⁶ Statistische Ämter (2011), ZENSUS2011 - Zensusatlas [Online] URL: https://atlas.zensus2011.de/ [2011]. ⁷ R. van den Hoed, J. R. Helmus, R. de Vries, D. Bardok (2013), Data analysis on the public charge infrastructure in the city of Amsterdam. In: 2013 World Electric Vehicle Symposium and Exhibition (EVS27), 1–10.

⁸ Kurtz, J., Sprik, S., Bradley, T. H. (2019), Review of transportation hydrogen infrastructure performance and reliability, International Journal of Hydrogen Energy, 44(23), 12010–12023. 10.1016/j.ijhydene.2019.03.027.

⁹ Transport & Environment (2020), Recharge: How many charge points will Europe and its Member States need in the 2020s.

¹⁰ The International Renewable Energy Agency (IRENA) (2020), Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5C climate goal.

¹¹ Reuß, M., Grube, T., Robinius, M., Stolten, D. (2019), A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany, Applied Energy, 247, 438– 453. 10.1016/j.apenergy.2019.04.064.

¹² Hydrogen Council (2021), Hydrogen Insights 2021 (supported by McKinsey & Company).

