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Bias

• SARAH-2 and HelioMont 
biases show normality with a 
confidence of 99%*

• Predicting the bias instead of 
the ground measurements 
showed an improvement on 
the performances

* D’agostino Pearson test on normality
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First Results
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First Results

Feature Importance
Permutation algorithm 
based on Fisher et al., 
2018
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Forecasting Setup

Probabilistic optical-
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Forecasting Setup 
Probabilistic Optical-Flow Model - Extrapolation
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Forecasting Setup 
Probabilistic Optical-Flow Model – Steps* without decomposition
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Forecasting Setup 
Probabilistic Optical-Flow Model – Steps*
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Benchmark Models

Moreover, we also compared our models to other two benchmark models not based on 
KI forecasting: 

1. Persistence Ensemble (PeEn, Alessandrini et al., 2019)
!𝑃𝑉!,# = 𝑃𝑉!$#×&'( ∀𝑗 ∈ 1,… , 𝑘)*+ ∀𝑡 ∈ (𝑡, + 1,… , 𝑡, + 𝑛)

2. Persistence (Pe)
!𝑃𝑉! = 𝑃𝑉!! ∀𝑡 ∈ (𝑡, + 1,… , 𝑡, + 𝑛)
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Case Study

We tested the different models to forecast the cantonal aggregated PV power in 
Switzerland with a time resolution of 15 min and a lead time of 4 hours.

• The input is composed by one hour of data m = 4
• The output is 4 hours of PV production n = 16
• 7 Swiss cantons are considered in this study: [ZH, BE, TG, AG, BL, ZG, VD]
• For the prob. optical-flow models 𝑘!"# is set to 25, while for PeEn 𝑘!"# is set to 12 
• The data is limited to Solar Zenith Angle < 88 degrees
• The test set is composed by 60 days of 2018 and the remaining days of 2018 are used for train and 

validation
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Results – PV Regression

• The regression performance on the different cantons is measured looking at the normalized RMSE 
and normalized MAE. 

• The normalization factor is the maximum power generated in the respective canton in 2018.
• The model performs better for bigger regions. In fact, there is a strong negative linear correlation 

between nRMSE and the number of pixels representing the regions.
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Canton nMAE nRMSE N Pixels
ZH 2.94% 4.23% 478
BE 2.41% 3.35% 1616
TG 3.04% 4.42% 270
ZG 3.82% 5.77% 65
VD 2.39% 3.4% 840
AG 2.94% 4.2% 386
BL 3.43% 5.18% 144



Results – KI Forecast

The average CRPS on the test set is computed for every pixels belonging to the mentioned cantons:
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CRPS

• The autoregressive model clearly improves the quality of the forecasted ensemble of KI maps. With 
respect to the probabilistic extrapolation method, it reduces the average CRPS by 25.5%.

• The cascade decomposition has a small impact on the prediction.
• The models struggle to precisely forecast on the Alps region.


