

white he is the second and the first state of the

Carpentieri, A.^{1,2}, M. Wild², D. Folini², A. Meyer¹

1 Bern University of Applied Sciences, Quellgasse 21, 2501 Biel, Switzerland 2 ETH Zurich, Universitaetstrasse 16, 8006 Zurich, Switzerland Corresponding author: alberto.carpentieri@bfh.ch

Underestimation of satellite-based surface solar radiation in the Swiss Alpes: a bias correction approach

Carpentieri, A.^{1,2}, M. Wild², D. Folini², A. Meyer¹

1 Bern University of Applied Sciences, Quellgasse 21, 2501 Biel, Switzerland 2 ETH Zurich, Universitaetstrasse 16, 8006 Zurich, Switzerland Corresponding author: alberto.carpentieri@bfh.ch

Bias

$bias_{lon,lat,t} = SSR_{lon,lat,t}^{sat} - SSR_{lon,lat,t}^{ground}$

Fachhochschule

Bias

$bias_{lon,lat,t} = SSR_{lon,lat,t}^{sat} - SSR_{lon,lat,t}^{ground}$

- (*lon*, *lat*, *t*): point in space-time, (*lon*, *lat*) \in *S*, *t* \in *T*
- SSR^{sat} : satellite-derived SSR measurement
- SSR^{ground} : ground station SSR measurement

Fachhochschule

Bias

$bias_{lon,lat,t} = SSR_{lon,lat,t}^{sat} - SSR_{lon,lat,t}^{ground}$

- (*lon*, *lat*, *t*): point in space-time, (*lon*, *lat*) \in *S*, *t* \in *T*
- SSR^{sat} : satellite-derived SSR measurement
- SSR^{ground} : ground station SSR measurement

GOAL

Bias HelioMont HelioSat SARAH-2 2018-03-20 12:10pm JUN

10

Fachhochschule

Bias

- SARAH-2 and HelioMont biases show normality with a confidence of 99%*
- Predicting the bias instead of the ground measurements showed an improvement on the performances

Regression Models

HelioMont BC Model

 $bias_{t,lon,lat} = SSR^{sat}_{t,lon,lat} - SSR^{ground}_{t,lon,lat}$ ~ $SSR^{sat}_{t,lon,lat} + SZA_{t,lon,lat} + KI_{t,lon,lat} + TE_t + lon + lat + alt_{lon,lat}$

Regression Models

ETH zürich

 $KI = SSR^{sat}$ $SSR_{clear-sky}^{sat}$

Fachhochschule

HelioMont BC Model

 $bias_{t,lon,lat} = SSR^{sat}_{t,lon,lat} - SSR^{ground}_{t,lon,lat}$ $\sim SSR^{sat}_{t,lon,lat} + SZA_{t,lon,lat} + KI_{t,lon,lat} + TE_t + lon + lat + alt_{lon,lat}$

Regression Models

HelioMont BC Model

 $bias_{t,lon,lat} = SSR^{sat}_{t,lon,lat} - SSR^{ground}_{t,lon,lat}$ $\sim SSR^{sat}_{t,lon,lat} + SZA_{t,lon,lat} + KI_{t,lon,lat} + TE_t + on + lat + alt_{lon,lat}$

$$TE_t = f(2\pi \times t_{day}/365)$$

Regression Models

HelioMont BC Model

 $bias_{t,lon,lat} = SSR^{sat}_{t,lon,lat} - SSR^{ground}_{t,lon,lat}$ ~ $SSR^{sat}_{t,lon,lat} + SZA_{t,lon,lat} + KI_{t,lon,lat} + TE_t + lon + lat + alt_{lon,lat}$

SARAH-2 BC Model

 $bias_{t,lon,lat} = SSR^{sat}_{t,lon,lat} - SSR^{ground}_{t,lon,lat}$ $\sim SSR^{sat}_{t,lon,lat} + SZA_{t,lon,lat} + TE_t + lon + lat + alt_{lon,lat}$

[%] RMSD Improvement

First Results

Feature Importance

Permutation algorithm based on Fisher et al., 2018

+ Time of year + Snow cover

Thank you!

Contacts: alberto.carpentieri@bfh.ch

Forecasting Setup

Forecasting Setup

Forecasting Setup Probabilistic Optical-Flow Model - Extrapolation

 $(t_0 - m, ..., t_0)$

 $(t_0 + 1, ..., t_0 + n)$

*Carriere et al., 2021

Forecasting Setup **Probabilistic Optical-Flow Model – Steps* without decomposition**

*Pulkkinen et al., 2019

Fachhochschule

Advection Field

Berner Fachhochschule

Forecasting Setup Probabilistic Optical-Flow Model – Steps*

2 5

Benchmark Models

Moreover, we also compared our models to other two benchmark models not based on KI forecasting:

1. Persistence Ensemble (PeEn, Alessandrini et al., 2019)

$$\widehat{PV}_{t,j} = PV_{t-j \times 24h} \qquad \forall j \in (1, \dots, k_{ens}) \; \forall t \in (t_0 + 1, \dots, t_0 + n)$$

2. Persistence (Pe)

$$\widehat{PV}_t = PV_{t_0} \qquad \forall t \in (t_0 + 1, \dots, t_0 + n)$$

Case Study

We tested the different models to forecast the cantonal aggregated PV power in Switzerland with a time resolution of 15 min and a lead time of 4 hours.

- The input is composed by one hour of data (m = 4)
- The output is 4 hours of PV production (n = 16)
- 7 Swiss cantons are considered in this study: [ZH, BE, TG, AG, BL, ZG, VD]
- For the prob. optical-flow models k_{ens} is set to 25, while for PeEn k_{ens} is set to 12
- The data is limited to Solar Zenith Angle < 88 degrees
- The test set is composed by 60 days of 2018 and the remaining days of 2018 are used for train and validation

Results – PV Regression

- The regression performance on the different cantons is measured looking at the normalized RMSE and normalized MAE.
- The normalization factor is the maximum power generated in the respective canton in 2018.
- The model performs better for bigger regions. In fact, there is a strong negative linear correlation between nRMSE and the number of pixels representing the regions.

Canton	nMAE	nRMSE	N Pixels
ZH	2.94%	4.23%	478
BE	2.41%	3.35%	1616
TG	3.04%	4.42%	270
ZG	3.82%	5.77%	65
VD	2.39%	3.4%	840
AG	2.94%	4.2%	386
BL	3.43%	5.18%	144

Results – KI Forecast

The average CRPS on the test set is computed for every pixels belonging to the mentioned cantons:

- The autoregressive model clearly improves the quality of the forecasted ensemble of KI maps. With respect to the probabilistic extrapolation method, it reduces the average CRPS by 25.5%.
- The cascade decomposition has a small impact on the prediction.
- The models struggle to precisely forecast on the Alps region.

