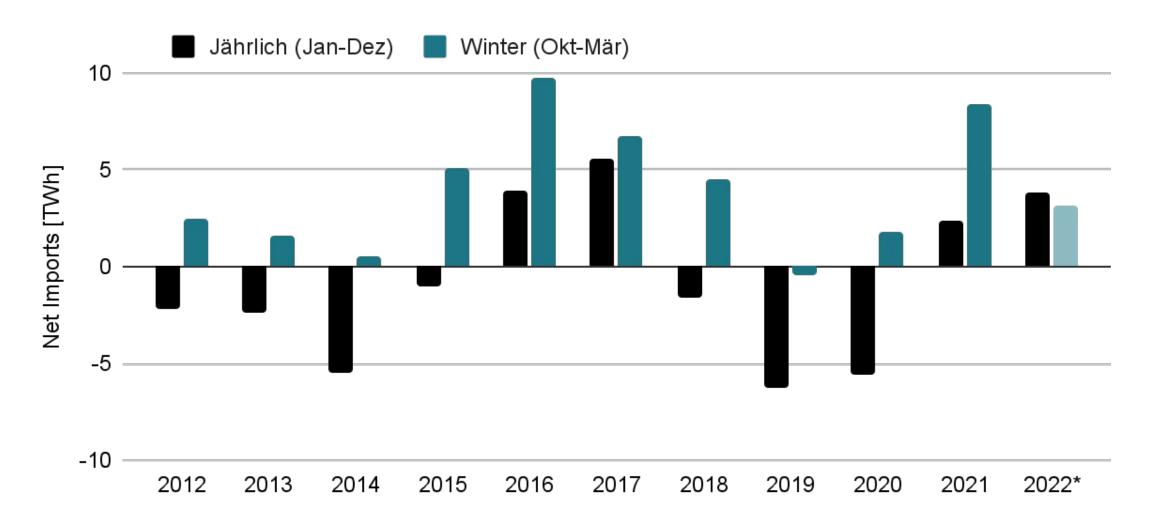


Szenarien für den Ausbau von PV in den Alpen - Wie viel Stromerzeugung ist möglich und wie viel Fläche ist nötig?

Energieforschungsgespräche Disentis, 2023Dr. Marius Schwarz, Desiree de Ferrars, Arijit Upadhyay

Arijit Upadhyay ESC

Desiree de Ferrars

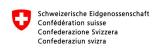

Master in

Environmental

Sciences (ETH Zurich)

Motivation | In fast allen Jahren ist die Schweiz auf Importe im Winter angewiesen – im Schnitt 4 TWh pro Winter ¹

Werte für den Winter gelten immer für das angezeigte und das kommende Jahr. 2012 steht bspw. für den Winter 2012/13. [1] BFE, Elektrizitätsstatistik


*: Werte aus Swiss Energy Charts

Motivation | Die Schweiz reagiert mit einer Anpassung des Energiegesetzes und ermöglicht alpine PVA bis zu 2 TWh bis 2025

Art. 71a Übergangsbestimmungen zur Änderung vom 30. September 2022 (Produktion von zusätzlicher Elektrizität aus Photovoltaik-Grossanlagen)

¹ Bis die Erstellung von Photovoltaik-Grossanlagen nach Absatz 2 schweizweit eine jährliche Gesamtproduktion von maximal 2 TWh erlaubt, gilt für solche Anlagen, sowie für ihre Anschlussleitungen, dass:

- a. ihr Bedarf ausgewiesen ist;
- sie von nationalem Interesse und standortgebunden sind; bei Anlagen in Objekten nach Artikel 5 NHG⁴ bleibt bei einer Abweichung von der ungeschmälerten Erhaltung die Pflicht zur grösstmöglichen Schonung unter Einbezug von Wiederherstellungs- oder Ersatzmassnahmen bestehen;
- c. für sie keine Planungspflicht besteht;
- d. das Interesse an ihrer Realisierung anderen nationalen, regionalen und lokalen Interessen grundsätzlich vorgeht;
- e. sie ausgeschlossen sind in:
 - Mooren und Moorlandschaften nach Artikel 78 Absatz 5 der Bundesverfassung,
 - ii. Biotopen von nationaler Bedeutung nach Artikel 18a NHG, und
 - iii. Wasser- und Zugvogelreservaten nach Artikel 11 des Jagdgesetzes vom 20. Juni 1986⁵.

AS 2022
www.bundesrecht.admin.ch
Massgebend ist die signierte
elektronische Fassung

Energiegesetz

(EnG)

(Dringliche Massnahmen zur kurzfristigen Bereitstellung einer sicheren Stromversorgung im Winter)

Änderung vom 30. September 2022

- ² Die Photovoltaik-Grossanlagen müssen folgende Voraussetzungen erfüllen:
- a. die jährliche Mindestproduktion beträgt 10 GWh; und
- b. die Stromproduktion vom 1. Oktober31. März (Winterhalbjahr) beträgt mindestens 500 kWh pro 1 kW installierter Leistung.
- ⁴ Anlagen, die bis zum 31. Dezember 2025 mindestens teilweise Elektrizität ins Stromnetz einspeisen, erhalten vom Bund eine Einmalvergütung in der Höhe von maximal 60 Prozent der Investitionskosten.

Motivation | Einige alpine PVA Projekte in Planung. Die meisten Projekte im Wallis.

Grengiols Solar (VS)

Test facility for Grengiols Solar at 2500 meters above sea level.

Gondo Solar (VS)

The test facility on Alpjerung (Gondo) Source: zvg

Vispertal Solar (VS)

The test facility consists of three module tables, each with seven bifacial modules. (Vispertal Solar) Source: zvg

Ovronnaz (VS)

Source: Wikipedia

Grande Dixence PV (VS)

Source: Grande Dixence SA

Nalpsolar (GR)

Source: Axpo

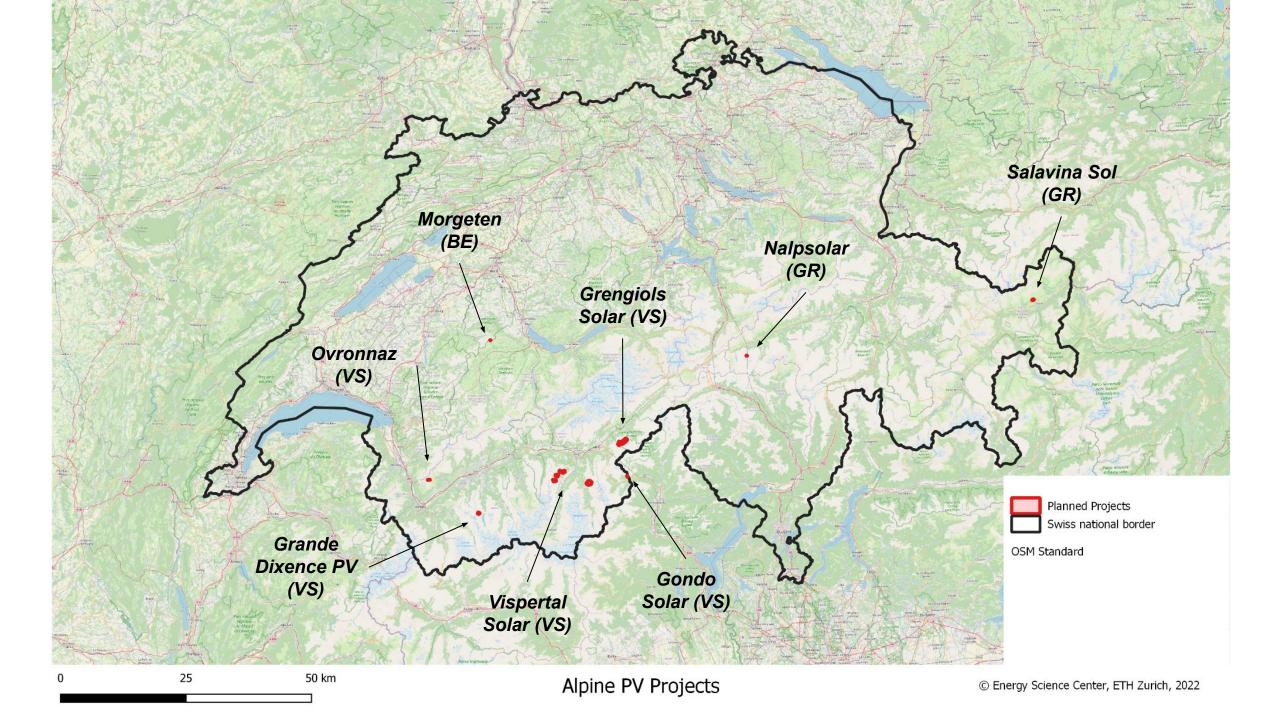
Scuol / Motta Naluns (GR)

Source: Filipe Coelho / Getty

Morgeten (BE)

Source: morgeten.ch

Motivation | Geplante Projekte¹ überschreiten die vorgegebenen 2 TWh/a – Realisierung der Grossprojekte bis 2025 jedoch unrealistisch


Name	Kanton	Gemeinde	Projektpartner	Höhe (üdM) [m]	Fläche [m²]	Installierte Kapazität [MW]	Jährliche Stromerzeugung [GWh/a]	pro Fläche [kWh/m²]	pro Fläche [kWp/m²]
Grande Dixence PV	VS	Heremence	Grande Dixence SA, Alpiq	2800	350'000	30-35*	40-50	114-143	10-11
Gondosolar	VS	Gondo	Alpiq, EES, Gemeinde, Renato Jordan (Initiant)	2000-2200	100'000	18	23.3	233	5.6
Grengiols Solar	VS	Grengiols	Peter Bodenmann (Initiant), FMV (Projektleitung), EnBAG (VNB), Gemeinde	2000-2500	5'000'000	800*	1165	233	6.3
Vispertal Solar	VS	Eisten	Martin Bodenmann (Initiant)	2000-2900	5'700'000	900*	1450	254	6.3
Nalpsolar	GR	Tujetsch	Axpo, CKW, Nalpsolar	2000	85'000	10	13	153	8.5
Salavina Sol (Sur Bos-cha)	GR	Scuol	Engadiner Kraftwerke, Pro Fotovoltaica Scuol, Gemeinde, Heinz Gross EKW	2000-2200	360'000	60-100	100	277	3.6
Ovronnaz Solar	VS	Leytron	Alpiq, Genedis	2000-2200	200'000 - 300'000*	30	40	133-200	6.7
Morgeten	BE	Morgeten	Gemeinde	1990-2160	60'000	6-10	11	183	6-10
Total / Durchschnitt					11'855'000 ≙ 12 km²	1'854-1'903 ≙ 1.9 GW	2'842 ≙ 2.8 TWh	197.7 kWh/m²	

^{1:} Dem Autor bekannte Projekte. Vermutlich gibt es noch weitere alpine PV Projekte >10GWh/a, die dem Autor nicht bekannt sind

Energy Science Center (ESC)

^{*}Eigene Berechnung

Motivation | Geplante Projekte überschreiten die vorgegebenen 2 TWh/a – Realisierung der Grossprojekte bis 2025 jedoch unrealistisch

Name	Kanton	Fläche [m²]	Jährliche Stromerzeugung [GWh/a]
Grande Dixence PV	VS	350'000	40-50
Gondosolar	VS	100'000	23.3
Grengiols Solar	VS	5'000'000	1165
Vispertal Solar	VS	5'700'000	1450
Nalpsolar	GR	85'000	13
Salavina Sol (Sur Bos-cha)	GR	360'000	100
Ovronnaz Solar	VS	200'000 - 300'000*	40
Morgeten	Bern	60'000	11
Total / Durchschnitt		11'855'000 ≙ 12 km²	2'842 ≙ 2.8 TWh

Die benötigte Gesamtfläche für bisherige Projekte mit 12 km² entspricht **0.03** % **der Schweiz.** Wir versiegeln jedes Jahr die gleiche Fläche für neue Strassen. ¹

Wenn 50% der jährlichen Stromerzeugung im Winter anfallen, können **35% der Winterimporte** gedeckt werden.

Generell, sehen wir zwei verschiedene Arten von alpinen PV Projekten:

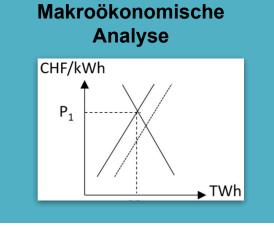
- kleinere Projekte (<100 GWh/a) in der Nähe bestehender Infrastruktur
- grössere Projekte (~10000 GWh/a) unabhängig von bestehender Infrastruktur

Grössere Projekte mit einigen (zusätzlichen) Fragezeichen

- Können diese Anlagen teilweise (10%?) an das Netz bis 2025 angeschlossen werden?
- Wie langwierig ist der Anschluss an die Netzebene 1?
- Wie sicher ist der Netzanschluss der restlichen Anlage nach 2025 nach heutiger Regelung?
- Wie sieht der Landschaftsschutz zu PV-Grossanlagen?

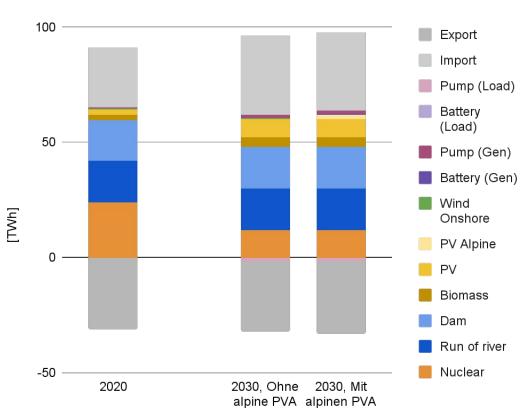
Was würde es für das Schweizer Stromsystem bedeuten, wenn alle geplanten Projekte bis 2030 realisiert werden könnten?

Methodik | Nexus-e Plattform ¹



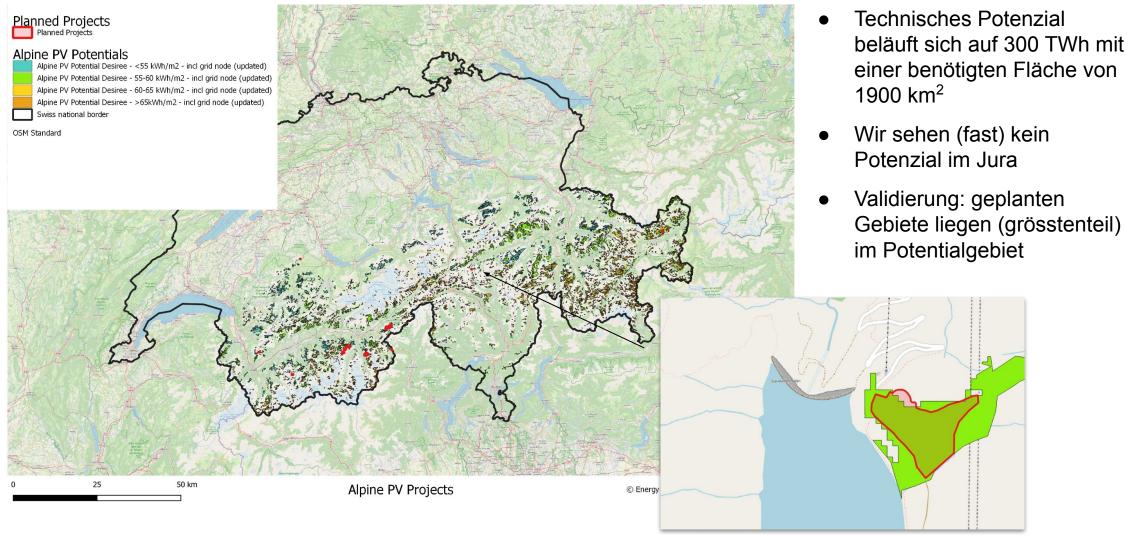
i: in Entwicklung

ii: Zwei unterschiedliche Versionen: Optimierung und Simulation



Vorläufige Resultate | Was würde es für das Schweizer Stromsystem bedeuten, wenn alle geplanten Projekte bis 2030 realisiert werden könnten?

Jährliche Stromerzeugung


- Verfügbare Daten zur Sonneneinstrahlung¹ und Annahmen für die benötigte Fläche (10 m²/kW_p) ergeben für die geplanten Projekte nur 1.9 TWh (statt der 2.8 TWh) und einen Winterstromanteil von max 40%. Alle Projekte (ausser Morgeten) mit >500 kWh/kWp
- Inländische Stromerzeugung nimmt 2020-30 ab (Beznau I) trotz >8 TWh Dach-PV Zubau
- >90% des erzeugten Stroms können in das Netz eingespeist werden
- Im modellierten Übertragungsnetz scheinen nur die Leitungen ausgehend vom Transformator "CH_Riddes_220" (PVA in Ovrannaz) problematisch
- Jährliche Netto Importe können von 3.7 auf 2 TWh gesenkt werden. Sonst bleibt optimales Stromsystem für 2030 ähnlich.

Vorläufige Resultate | Abgesehen von den geplanten Projekten, wie gross ist das technische Potential für alpine PVA?

Szenario 1: Weiche Ausschlusskriterien	Szenario 2: Strenge Ausschlusskriterien (Referenzszenario)	Szenario 3 Sehr strenge Ausschlusskriterien
Nordhänge	Nordhänge	Nordhänge
Felssturz	Felssturz	Felssturz
<800m Höhe	<1500m Höhe	<2000m Höhe
>40° Neigung	>30° Neigung	>30° Neigung
Nicht geeignetes Land	Nicht geeignetes Land	Nicht geeignetes Land
Nationalparks	Nationalparks	Nationalparks
Geschützte Gebiete (gesetzlich)	Geschützte Gebiete (gesetzlich)	Geschützte Gebiete (gesetzlich)
>500 kWh/kWp im Winter *	>500 kWh/kWp im Winter	>500 kWh/kWp im Winter
10 GWh Jahreserzeugung *	10 GWh Jahreserzeugung	10 GWh Jahreserzeugung
	Gebäude 100m Distanz	Gebäude 100m Distanz
		Lawinenrisikogebiet
		keine Infrastruktur in unmittelbarer Nähe (Straße, Skilifte, Stromnetz)

- Weitere PV Anlagen in den Alpen für 2025-2050 notwendig
- Um diesen notwendigen Zuwachs besser zu verstehen, haben wir unsere Analyse zum technischen Potential von alpinen PV Anlagen verfeinert.
- Vor berücksichtigen nun auch regulatorische Vorgaben und unterscheiden zwischen Grossprojekten (Szenario 1 und 2) und kleineren Projekten in der Nähe von bestehender Infrastruktur aufzuzeigen.

Vorläufige Resultate | Technischen Potential unter Berücksichtigung regulatorischer Vorgaben (Szenario 2) beträgt 300 TWh auf einer Fläche von 1900 km² (0.45% der Schweizer Fläche)

Nächsten Schritte | Weiterer Austausch mit Forschung und Industrie notwendig

- Verschiedene Szenarien für das technische Potential berechnen
- Technisches Potential und Annahme zu Kostendaten in Nexus-e (Optimierungsmodell berücksichtigen)
- Analysieren unter welchen Bedingungen alpine PVA eine wichtige Stütze des Schweizerischen Strommixes werden kann

Vergleich der angenommene Kosten für alpine Freiflächen-PVA und Aufdach-PVA für 2020–2030

	Alpine Freiflächen-PVA	Aufdach PVA
Solarzelle	616 Fr./kWp	
Bauarbeiten	867 Fr./kWp	
Anschlusskosten und Stromleitungen*	344 Fr./KWp	
Investitionskosten Gesamt	1827 Fr./kWp	775 Fr./kWp (>100 kWp) bis 1870 Fr./kWp (<10 kWp)
Variable Kosten (inkl. Wartungs- und Instandhaltungskosten, Arbeitskosten für Netzanschluss)	0.027 Fr./kWh	0.027 Fr./kWh

^{*} Wir haben hier eine durchschnittliche Länge der neuen Stromleitungen von 10 km angenommen

Was wir hierzu benötigen:

- Austausch mit aktuellen Projekten
 - um Kosten von alpinen PVA besser einschätzen zu können
 - um Kriterien für das technische Potential zu verfeinern
- Höher aufgelöste Daten zur Sonneneinstrahlung im alpinen Raum (meteotest, sunwell)

Energy Science Center (ESC)

Fazit | Technisches Potenzial von alpinen PVA extrem hoch, Realisierbarkeit von Projekten bis 2025 und darüber hinaus noch unklar

Sehr hohes technisches Potenzial

Viele Projekte in Planung

Soziale Akzeptanz scheint gegeben, finanzielle Beteiligung der Gemeinde notwendig.

Umsetzung der Projekte bis 2025 schwieriger als zu Beginn gedacht (oder kommuniziert)

Einschätzung des Themas in der Industrie und den Medien geht stark auseinander

2 TWh bis 2025 nur ein erster Schritt, Folgeregelung (Mantelerlass?) und weitere Projekte notwendig

Neue Gesetzgebung scheint eher kleinere Projekte (<100GWh) mit bestehender Infrastruktur zu bevorzugen (kurzer Zeitraum für die Realisierung) als grosse Projekte (~1000 GWh) mit Gebieten welche noch erschlossen werden müssen

Nationale Strategie für PV-Grossanlagen in den Alpen notwendig?

Prof. Dr. Gabriela Hug Power System Lab (PSL)

Dr. Turhan Hilmi DemirayResearch Center for
Energy Networks (FEN)

Prof. Dr. Giovanni Sansavini Reliability and Risk Engineering Laboratory

Prof. Dr. Andre Bardow Chair of Energy and Process Systems Engineering (EPSE)

Dr. Christian Schaffner Energy Science Center (ESC)

Dr. Jared Garrison FEN

Dr. Blazhe Gjorgiev RRE

Dr. Mengshuo Jia PSL

Florian Baader EPSE

Elena Raycheva PSL

María Parajeles PSL

Ambra van Liedekerke

Dr. Marius Schwarz

Arijit Upadhyay ESC

Samuel Renggli ESC

Danke für Ihre

Dr. Marius Schwarz mschwarz@ethz.ch

More information on:

www.nexus-e.ethz.ch

Aufmerksamkeit.

Energy Science Center (ESC)

15