The one that could have been!

The Swiss Supply Security in Winter 2022-2023 Under Alternative Weather Realizations

Disentis 2024
Ali Darudi, Hannes Weigt
ZHAW
SWEET EDGE

What did happen!

Challenges of the winter of 2022-2023

- Low hydro storage
- Outages of the French nuclear fleet
- Gas shortage risks
 - Russia's 45% in gas market

What did happen!

European Policies

- Gas storage regulation
 - 80% capacity by November
- Coordinated demand-reduction measures for Gas
 - voluntary 15% reduction of gas consumption
- Emergency interventions to address high prices
 - Mandatory 5% reduction of peak electricity consumption
 - Voluntary 10% reduction of total consumption

Swiss Policies

- Winter hydro reserve
 - 400 GWh (1.20 Ct./kWh)
- Temporary reserve fleet
 - 326 MW of thermal plants

What did happen!

Success*

- No lost load
- * Unprecedently high prices in gas and electricity
- Policy effects but also favourable winter weather realization
 - was 1.13 °C warmer than the 1991-2020 average

Surface air temperature anomaly for February 2023 relative to the February average for the period 1991-2020.

Europe's Gas Prices Are Far Below Their Crisis Peaks

Research question: What could have happened!

- Analyse the Swiss and European security of supply in winter 2022-2023
 - Several alternative
 - Weather realization
 - Conventional fleet availability

Model

Model – SA 22

- Dispatch
- Zonal structure
- Market coupling approach
 - ATC: Switzerland and its neighbors
 - Flow-based coupling
 - based on a nodal model
- Hourly resolution
- November to April
- Detailed Swiss hydro
- System cost minimization

Model characteristics

- System cost minimization
- Deterministic
- Perfect foresight

Scenarios – Gas and Nuclear

- Benchmark
- Reduced availability of the French Nuclear
- Limit availability of gas availability to previous winter values
- Combinatory scenarios
 - Reduced availability of French nuclear + 0% gas-saving target
 - Reduced availability of French nuclear + 10% gas-saving target
 - Reduced availability of French nuclear + 20% gas-saving target
 - Reduced availability of French nuclear + 30% gas-saving target

Scenarios - Weather

Criteria	Demand profile year_weather profile year
Consistency (in TYNDP as a representative year)	1982_1982
Consistency (in TYNDP as a representative year)	1984_1984
Consistency (in TYNDP as a representative year)	2007_2007
Highest daily residual load	2007_1997
Dunkelfalute	2007_2009
Highest residual winter load	1984_1985

Scenarios

Generation and demand of Switzerland for the benchmark scenario

Results

Switzerland – ENS

Switzerland – Hourly dispatch

Reduced Nuclear, 20% gas-saving target, weather 1984_1984

Switzerland – Weekly dispatch

Conclusion

Conclusion

- Perfect storm for the "conventional" energy system in Europe
- CH
 - Importance of international cooperation
 - hydro flexibility and import capacity helps avoid ENS
 - CH starts having problems mostly when neighbours start having "energy" problems

Thank you for your attention!

Ali Darudi ali.darudi@zhaw.ch

Europe

Europe

Europe

avert ENS by dirty generation

Weather 1982_1982 Generation per type (excluding renewable and hydro)

Figure 6 Total renewable generation and residual load of the whole system for the benchmark scenario per weather pairings. On the x-axis, the first and second value denotes the climate year corresponding to the demand and weather-dependant time series, respectively. For instance, 1984_1985 signifies a simulation with 1984 demand time series and PV/wind availability factor and hydro inflow of 1985.

Swissgrid comparison